A dual-networks architecture of top-down control

[1]  T. Braver,et al.  Cognitive control, goal maintenance, and prefrontal function in healthy aging. , 2008, Cerebral cortex.

[2]  Bharat B. Biswal,et al.  Competition between functional brain networks mediates behavioral variability , 2008, NeuroImage.

[3]  Maurizio Corbetta,et al.  The role of impaired neuronal communication in neurological disorders , 2007, Current opinion in neurology.

[4]  Elisabeth J. Ploran,et al.  Evidence Accumulation and the Moment of Recognition: Dissociating Perceptual Recognition Processes Using fMRI , 2007, The Journal of Neuroscience.

[5]  D. V. Essen,et al.  Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex , 2007, Neuron.

[6]  Robert Desimone,et al.  Top–Down Attentional Deficits in Macaques with Lesions of Lateral Prefrontal Cortex , 2007, The Journal of Neuroscience.

[7]  Anna C Nobre,et al.  Subsecond Changes in Top–Down Control Exerted by Human Medial Frontal Cortex during Conflict and Action Selection: A Combined Transcranial Magnetic Stimulation–Electroencephalography Study , 2007, The Journal of Neuroscience.

[8]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[9]  S. Petersen,et al.  Development of distinct control networks through segregation and integration , 2007, Proceedings of the National Academy of Sciences.

[10]  M. Corbetta,et al.  Electrophysiological signatures of resting state networks in the human brain , 2007, Proceedings of the National Academy of Sciences.

[11]  Walter Schneider,et al.  The cognitive control network: Integrated cortical regions with dissociable functions , 2007, NeuroImage.

[12]  Justin L. Vincent,et al.  Distinct brain networks for adaptive and stable task control in humans , 2007, Proceedings of the National Academy of Sciences.

[13]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[14]  C. Summerfield,et al.  An information theoretical approach to prefrontal executive function , 2007, Trends in Cognitive Sciences.

[15]  Timothy E. J. Behrens,et al.  Functional organization of the medial frontal cortex , 2007, Current Opinion in Neurobiology.

[16]  Andreas A Ioannides,et al.  Dynamic functional connectivity , 2007, Current Opinion in Neurobiology.

[17]  Biyu J. He,et al.  Breakdown of Functional Connectivity in Frontoparietal Networks Underlies Behavioral Deficits in Spatial Neglect , 2007, Neuron.

[18]  Abraham Z. Snyder,et al.  A method for using blocked and event-related fMRI data to study “resting state” functional connectivity , 2007, NeuroImage.

[19]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[20]  K. Johnston,et al.  Top-Down Control-Signal Dynamics in Anterior Cingulate and Prefrontal Cortex Neurons following Task Switching , 2007, Neuron.

[21]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[22]  Christopher L. Asplund,et al.  Isolation of a Central Bottleneck of Information Processing with Time-Resolved fMRI , 2006, Neuron.

[23]  E. Bullmore,et al.  Adaptive reconfiguration of fractal small-world human brain functional networks , 2006, Proceedings of the National Academy of Sciences.

[24]  Deanna M. Barch,et al.  Extracting core components of cognitive control , 2006, Trends in Cognitive Sciences.

[25]  Jon M Fincham,et al.  Distinct roles of the anterior cingulate and prefrontal cortex in the acquisition and performance of a cognitive skill , 2006, Proceedings of the National Academy of Sciences.

[26]  M. Kearns,et al.  An Experimental Study of the Coloring Problem on Human Subject Networks , 2006, Science.

[27]  E. Procyk,et al.  Reward encoding in the monkey anterior cingulate cortex. , 2006, Cerebral cortex.

[28]  Kristina M. Visscher,et al.  A Core System for the Implementation of Task Sets , 2006, Neuron.

[29]  Tianzi Jiang,et al.  Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder , 2006, Neuroscience Letters.

[30]  C. Liston,et al.  Anterior Cingulate and Posterior Parietal Cortices Are Sensitive to Dissociable Forms of Conflict in a Task-Switching Paradigm , 2006, Neuron.

[31]  Vinod Menon,et al.  Where and When the Anterior Cingulate Cortex Modulates Attentional Response: Combined fMRI and ERP Evidence , 2006, Journal of Cognitive Neuroscience.

[32]  E. Crone,et al.  Neural evidence for dissociable components of task-switching. , 2006, Cerebral cortex.

[33]  Birte U. Forstmann,et al.  Voluntary Selection of Task Sets Revealed by Functional Magnetic Resonance Imaging , 2006, Journal of Cognitive Neuroscience.

[34]  Katsuyuki Sakai,et al.  Prefrontal Set Activity Predicts Rule-Specific Neural Processing during Subsequent Cognitive Performance , 2006, The Journal of Neuroscience.

[35]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[36]  E. Kandel,et al.  Resolving Emotional Conflict: A Role for the Rostral Anterior Cingulate Cortex in Modulating Activit , 2006 .

[37]  Daniel A. McFarland,et al.  The Art and Science of Dynamic Network Visualization , 2006, J. Soc. Struct..

[38]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[39]  Jin Fan,et al.  The activation of attentional networks , 2005, NeuroImage.

[40]  M. Woldorff,et al.  Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. , 2004, Cerebral cortex.

[41]  M. Walton,et al.  Action sets and decisions in the medial frontal cortex , 2004, Trends in Cognitive Sciences.

[42]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[43]  Lawrence H. Snyder,et al.  Executive control and task-switching in monkeys , 2003, Neuropsychologia.

[44]  E. Koechlin,et al.  The Architecture of Cognitive Control in the Human Prefrontal Cortex , 2003, Science.

[45]  P. Strick,et al.  Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate , 2003, The Journal of Neuroscience.

[46]  C. Curtis,et al.  Persistent activity in the prefrontal cortex during working memory , 2003, Trends in Cognitive Sciences.

[47]  Jeremy R. Reynolds,et al.  Neural Mechanisms of Transient and Sustained Cognitive Control during Task Switching , 2003, Neuron.

[48]  Randy L. Buckner,et al.  Mixed blocked/event-related designs separate transient and sustained activity in fMRI , 2003, NeuroImage.

[49]  R. Passingham,et al.  Prefrontal interactions reflect future task operations , 2003, Nature Neuroscience.

[50]  G. Edelman,et al.  Theoretical neuroanatomy and the connectivity of the cerebral cortex , 2002, Behavioural Brain Research.

[51]  John R Anderson,et al.  Neural mechanisms of planning: A computational analysis using event-related fMRI , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[53]  C. S. Holling,et al.  Panarchy Understanding Transformations in Human and Natural Systems , 2002 .

[54]  J. Duncan,et al.  An adaptive coding model of neural function in prefrontal cortex , 2001, Nature Reviews Neuroscience.

[55]  R. Buckner,et al.  Dissociating State and Item Components of Recognition Memory Using fMRI , 2001, NeuroImage.

[56]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[57]  E. Koechlin,et al.  Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J. Cohen,et al.  Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. , 2000, Science.

[59]  E. Koechlin,et al.  The role of the anterior prefrontal cortex in human cognition , 1999, Nature.

[60]  J. Allman,et al.  A neuronal morphologic type unique to humans and great apes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[62]  J A Fiez,et al.  Cerebellar Contributions to Cognition , 1996, Neuron.

[63]  S. Petersen,et al.  Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. , 1992, Brain : a journal of neurology.

[64]  M. Posner,et al.  The attention system of the human brain. , 1990, Annual review of neuroscience.

[65]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..