A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages.

Interpretation of the new information arising from the Plasmodium falciparum Genome Project requires a good working knowledge of the ultrastructure of the parasite; however many aspects of the morphology of this species remain obscure. Lawrence Bannister, John Hopkins and colleagues here give an illustrated overview of the three-dimensional (3-D) organization of the merozoite, ring, trophozoite and schizont stages of the parasite, based on available data that include 3-D reconstruc-tion from serial electron microscope sections. The review describes the chief organelles present in these stages, emphasizing the continuity of structure in addition to specialized, stage-specific features developed during the asexual erythrocytic cycle.

[1]  C. Atkinson,et al.  Ultrastructure of malaria-infected erythrocytes. , 1990, Blood cells.

[2]  R. J. Howard,et al.  Direct access to serum macromolecules by intraerythrocytic malaria parasites , 1991, Nature.

[3]  L. Bannister,et al.  The fine structure of secretion by Plasmodium knowlesi merozoites during red cell invasion. , 1989, The Journal of protozoology.

[4]  K. Haldar,et al.  Identification and localization of rab6, separation of rab6 from ERD2 and implications for an 'unstacked' Golgi, in Plasmodium falciparum. , 1996, Molecular and biochemical parasitology.

[5]  P. K. Hepler,et al.  THE FEEDING MECHANISM OF AVIAN MALARIAL PARASITES , 1966, The Journal of cell biology.

[6]  L. Bannister,et al.  Motile systems in malaria merozoites: how is the red blood cell invaded? , 2000, Parasitology today.

[7]  R. Anders,et al.  Plasmodium falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion , 1991, Infection and immunity.

[8]  R. Ladda,et al.  Penetration of Erythrocytes by Merozoites of Mammalian and Avian Malarial Parasites* , 2001, Journal of Parasitology.

[9]  J. E. Hyde,et al.  Microtubular organization visualized by immunofluorescence microscopy during erythrocytic schizogony in Plasmodium falciparum and investigation of post-translational modifications of parasite tubulin , 1993, Parasitology.

[10]  J. Corliss,et al.  Intracellular Parasitic Protozoa , 1976 .

[11]  M. Aikawa ULTRASTRUCTURE OF THE PELLICULAR COMPLEX OF PLASMODIUM FALLAX , 1967, The Journal of cell biology.

[12]  A. Holder Proteins on the surface of the malaria parasite and cell invasion , 1994, Parasitology.

[13]  C. Slomianny,et al.  The karyotype of Plasmodium falciparum determined by ultrastructural serial sectioning and 3D reconstruction. , 1986, The Journal of parasitology.

[14]  J. Dvorak,et al.  Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy. , 2000, Journal of structural biology.

[15]  K. Haldar Intracellular trafficking in Plasmodium-infected erythrocytes. , 1998, Current opinion in microbiology.

[16]  K. Vickerman,et al.  Merozoite formation in the erythrocytic stages of the malaria parasite plasmodium vinckei , 1967 .

[17]  G. Langsley,et al.  Novel secretory pathways in Plasmodium? , 1999, Parasitology today.

[18]  T. Sam-Yellowe Rhoptry organelles of the apicomplexa: Their role in host cell invasion and intracellular survival. , 1996, Parasitology today.

[19]  J. Heck,et al.  Intracellular structures of normal and aberrant Plasmodium falciparum malaria parasites imaged by soft x-ray microscopy. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[20]  L. Bannister,et al.  Lamellar membranes associated with rhoptries in erythrocytic merozoites of Plasmodium knowlesi: a clue to the mechanism of invasion , 1986, Parasitology.

[21]  D. Stenzel,et al.  Sorting of malarial antigens into vesicular compartments within the host cell cytoplasm as demonstrated by immunoelectron microscopy. , 1989, European journal of cell biology.

[22]  J. White,et al.  DNA replication in the malaria parasite. , 1996, Parasitology today.

[23]  T. Seed,et al.  Morphology of plasmodia. , 1980 .

[24]  M. Aikawa,et al.  FINE STRUCTURE OF THE ASEXUAL STAGES OF PLASMODIUM ELONGATUM , 1967, The Journal of cell biology.

[25]  W. Trager,et al.  Fine structure of human malaria in vitro. , 1978, The Journal of protozoology.

[26]  H. Ginsburg,et al.  Effects of chloroquine on the feeding mechanism of the intraerythrocytic human malarial parasite Plasmodium falciparum. , 1984, The Journal of protozoology.

[27]  L. G. Tilney,et al.  The cytoskeleton of protozoan parasites. , 1996, Current opinion in cell biology.

[28]  J. Dubremetz,et al.  The S-antigen of Plasmodium falciparum Palo Alto represents a new S-antigen serotype. , 1988, Molecular and biochemical parasitology.

[29]  P. Rathod,et al.  A membrane network for nutrient import in red cells infected with the malaria parasite. , 1997, Science.

[30]  L. Bannister,et al.  The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. , 1999, Protist.

[31]  K. Joiner,et al.  The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells. , 1998, Journal of cell science.

[32]  N. S. Jaikaria,et al.  Biogenesis of rhoptry organelles in Plasmodium falciparum. , 1993, Molecular and biochemical parasitology.

[33]  D. Roos,et al.  The nuclear envelope serves as an intermediary between the ER and Golgi complex in the intracellular parasite Toxoplasma gondii. , 1999, Journal of cell science.

[34]  J. Reeder,et al.  Evidence for vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes. , 2000, Molecular and biochemical parasitology.

[35]  L. Bannister,et al.  Microtubules in Plasmodium falciparum merozoites and their importance for invasion of erythrocytes , 1998, Parasitology.

[36]  S. Krishna,et al.  Ultrastructure of rhoptry development in Plasmodium falciparum erythrocytic schizonts , 2000, Parasitology.

[37]  M. Aikawa,et al.  Plasmodium falciparum Rhoptry Proteins of 140/130/110 kd (Rhop‐H) Are Located in an Electron Lucent Compartment in the Neck of the Rhoptries , 1995, The Journal of eukaryotic microbiology.

[38]  C. Slomianny Three-dimensional reconstruction of the feeding process of the malaria parasite. , 1990, Blood cells.

[39]  C. Slomianny,et al.  Application of the serial sectioning and tridimensional reconstruction techniques to the morphological study of the Plasmodium falciparum mitochondrion. , 1986, The Journal of parasitology.

[40]  L. Bannister,et al.  The role of the cytoskeleton in Plasmodium falciparum merozoite biology: an electron-microscopic view. , 1995, Annals of tropical medicine and parasitology.

[41]  K. Haldar,et al.  Sphingolipid synthesis as a target for chemotherapy against malaria parasites. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Irwin W. Sherman,et al.  Malaria : parasite biology, pathogenesis, and protection , 1998 .

[43]  M. Mossakowska,et al.  Actin-binding proteins of invasive malaria parasites and the regulation of actin polymerization by a complex of 32/34-kDa proteins associated with heat shock protein 70kDa. , 1998, Molecular and biochemical parasitology.

[44]  C. Slomianny,et al.  A cytochemical ultrastructural study of the lysosomal system of different species of malaria parasites. , 1990, The Journal of protozoology.

[45]  L. Miller,et al.  Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite , 1978, The Journal of cell biology.

[46]  D. Ferguson,et al.  Parasite-regulated membrane transport processes and metabolic control in malaria-infected erythrocytes. , 1995, The Biochemical journal.

[47]  K. Gull,et al.  The Plasmodium cell-cycle: facts and questions. , 1998, Annals of tropical medicine and parasitology.

[48]  J. Palmer,et al.  A Plastid of Probable Green Algal Origin in Apicomplexan Parasites , 1997, Science.