Review on Liair batteriesOpportunities, limitations and perspective

Abstract Li–air batteries are potentially viable ultrahigh energy density chemical power sources, which could potentially offer specific energies up to ∼3000 Wh kg−1 being rechargeable. The modern state of art and the challenges in the field of Li–air batteries are considered. Although their implementation holds the greatest promise in a number of applications ranging from portable electronics to electric vehicles, there are also impressive challenges in development of cathode materials and electrolyte systems of these batteries.

[1]  T. Umegaki,et al.  Oxidation of propylene carbonate containing LiBF4 or LiPF6 on LiCoO2 thin film electrode for lithium batteries , 2001 .

[2]  Hubert A. Gasteiger,et al.  The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries , 2010 .

[3]  Haoshen Zhou,et al.  A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy , 2010 .

[4]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[5]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[6]  Jianlu Zhang,et al.  A bi-functional micro-porous layer with composite carbon black for PEM fuel cells , 2006 .

[7]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[8]  Yuh-Shan Ho,et al.  Gas diffusion layer for proton exchange membrane fuel cells—A review , 2009 .

[9]  S. S. Sandhu,et al.  Lithium/air cell: Preliminary mathematical formulation and analysis , 2007 .

[10]  D. Guyomard,et al.  The 2D Rancieite-type manganic acid and its alkali-exchanged derivatives: Part I — Chemical characterization and thermal behavior , 1995 .

[11]  Tao Zhang,et al.  Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions , 2010 .

[12]  N. Seriani Ab initio thermodynamics of lithium oxides: from bulk phases to nanoparticles , 2009, Nanotechnology.

[13]  M. Salomon,et al.  Li-air batteries: A classic example of limitations owing to solubilities , 2007 .

[14]  Ping He,et al.  Preparation of mesocellular carbon foam and its application for lithium/oxygen battery , 2009 .

[15]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[16]  Xianguo Li,et al.  Review of bipolar plates in PEM fuel cells: Flow-field designs , 2005 .

[17]  Nicholas W. Bartlett,et al.  The effect of oxygen reduction on activated carbon electrodes loaded with manganese dioxide catalyst , 2008 .

[18]  J. Read Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery , 2006 .

[19]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[20]  N. Munichandraiah,et al.  High Capacity Li – O2 Cell and Electrochemical Impedance Spectroscopy Study , 2010 .

[21]  M. Harun,et al.  Electrochemical studies on epoxidised natural rubber-based gel polymer electrolytes for lithium-air cells , 2008 .

[22]  K. Brandt,et al.  Historical development of secondary lithium batteries , 1994 .

[23]  Sharon L. Blair,et al.  High-Capacity Lithium–Air Cathodes , 2009 .

[24]  Wu Xu,et al.  Optimization of Air Electrode for Li/Air Batteries , 2010 .

[25]  Jeffrey Read,et al.  Discharge characteristic of a non-aqueous electrolyte Li/O2 battery , 2010 .

[26]  S. S. Sandhu,et al.  Diffusion-limited model for a lithium/air battery with an organic electrolyte , 2007 .

[27]  Takashi Kuboki,et al.  Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte , 2005 .

[28]  Tao Zhang,et al.  Lithium anode for lithium-air secondary batteries , 2008 .

[29]  K. M. Abraham,et al.  A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint) , 2010 .

[30]  Deyang Qu,et al.  Investigation of the Gas-Diffusion-Electrode Used as Lithium/Air Cathode in Non-aqueous Electrolyte and the Importance of Carbon Material Porosity , 2010 .

[31]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[32]  Hui Ye,et al.  Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends. , 2007, Journal of the Electrochemical Society.

[33]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[34]  P. Bruce,et al.  An O2 cathode for rechargeable lithium batteries: The effect of a catalyst , 2007 .

[35]  J. Yamaki,et al.  Anodic oxidation of propylene carbonate and ethylene carbonate on graphite electrodes , 1995 .

[36]  Tao Zhang,et al.  A novel high energy density rechargeable lithium/air battery. , 2009, Chemical communications.

[37]  Ji‐Guang Zhang,et al.  Ambient operation of Li/Air batteries , 2010 .

[38]  James McBreen,et al.  Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries , 2009 .

[39]  James McBreen,et al.  New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries , 2008 .

[40]  Wu Xu,et al.  Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment , 2009 .

[41]  Ji-Guang Zhang,et al.  Air electrode design for sustained high power operation of Li/air batteries , 2009 .

[42]  Xuejie Huang,et al.  A pentafluorophenylboron oxalate additive in non-aqueous electrolytes for lithium batteries , 2009 .

[43]  E. Littauer,et al.  Corrosion of Lithium in Alkaline Solution , 1977 .

[44]  B. Kumar,et al.  Development of membranes and a study of their interfaces for rechargeable lithium–air battery , 2009 .

[45]  Ruoshi Li,et al.  Novel composite polymer electrolyte for lithium air batteries , 2010 .

[46]  K. C. Tsai,et al.  Anodic Behavior of Lithium in Aqueous Electrolytes I . Transient Passivation , 1976 .

[47]  N. Sammes,et al.  Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium–Air Secondary Batteries , 2009 .

[48]  Keith Scott,et al.  Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries , 2010 .

[49]  Wu Xu,et al.  Effects of Nonaqueous Electrolytes on the Performance of Lithium/Air Batteries , 2010 .

[50]  Matthew H. Ervin,et al.  Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery , 2003 .

[51]  J. Nørskov,et al.  Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. , 2010, The Journal of chemical physics.

[52]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[53]  Jim P. Zheng,et al.  Theoretical Energy Density of Li–Air Batteries , 2008 .

[54]  Tao Zhang,et al.  Li∕Polymer Electrolyte∕Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium–Air Secondary Batteries with an Aqueous Electrolyte , 2008 .

[55]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.