A robust extension of the bivariate Birnbaum-Saunders distribution and associated inference

We propose here a robust extension of the bivariate Birnbaum-Saunders (BS) distribution derived recently by Kundu et al. (2010). This extension is based on scale mixtures of normal (SMN) distributions that are used for modeling symmetric data. This type of bivariate Birnbaum-Saunders distribution based on SMN models is an absolutely continuous distribution whose marginals are of univariate Birnbaum-Saunders type. We then develop the EM-algorithm for the maximum likelihood (ML) estimation of the model parameters, and illustrate the obtained results with a real data and display the robustness feature of the estimation procedure developed here.

[1]  Ying Nian Wu,et al.  Efficient Algorithms for Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t Distribution , 2001 .

[2]  C. Chatfield Continuous Univariate Distributions, Vol. 1 , 1995 .

[3]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[4]  Andre Lucas,et al.  Robustness of the student t based M-estimator , 1997 .

[5]  J. Navarro Characterizations using the bivariate failure rate function , 2008 .

[6]  S. Fotopoulos,et al.  On the Conditional Variance for Scale Mixtures of Normal Distributions , 2000 .

[7]  Narayanaswamy Balakrishnan,et al.  Lifetime analysis based on the generalized Birnbaum-Saunders distribution , 2008, Comput. Stat. Data Anal..

[8]  Debasis Kundu,et al.  Generalized multivariate Birnbaum-Saunders distributions and related inferential issues , 2013, J. Multivar. Anal..

[9]  Debasis Kundu,et al.  On the hazard function of Birnbaum-Saunders distribution and associated inference , 2008, Comput. Stat. Data Anal..

[10]  Narayanaswamy Balakrishnan,et al.  Shape and change point analyses of the Birnbaum-Saunders-t hazard rate and associated estimation , 2012, Comput. Stat. Data Anal..

[11]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[12]  Xiao-Li Meng,et al.  Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .

[13]  Víctor Leiva,et al.  A new class of survival regression models with heavy-tailed errors: robustness and diagnostics , 2008, Lifetime data analysis.

[14]  Heleno Bolfarine,et al.  An extension of the generalized Birnbaum-Saunders distribution , 2009 .

[15]  Filidor Vilca-Labra,et al.  A New Fatigue Life Model Based on the Family of Skew-Elliptical Distributions , 2006 .

[16]  A. P. Basu,et al.  BIVARIATE FAILURE RATE , 1971 .

[17]  Gilberto A. Paula,et al.  Robust statistical modeling using the Birnbaum-Saunders- t distribution applied to insurance , 2012 .

[18]  N. Balakrishnan,et al.  Recurrence relations for bivariate t and extended skew-t distributions and an application to order statistics from bivariate t , 2009, Comput. Stat. Data Anal..

[19]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[20]  B. Dhillon Life Distributions , 1981, IEEE Transactions on Reliability.

[21]  M Davidian,et al.  Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data , 2001, Biometrics.

[22]  D. F. Andrews,et al.  Scale Mixtures of Normal Distributions , 1974 .

[23]  N. Balakrishnan,et al.  Continuous Bivariate Distributions , 2009 .

[24]  Z. Birnbaum,et al.  A new family of life distributions , 1969 .

[25]  K. Lange,et al.  Normal/Independent Distributions and Their Applications in Robust Regression , 1993 .

[26]  Debasis Kundu,et al.  Erratum to "Point and interval estimation for the two-parameter Birnbaum-Saunders distribution based on Type-II censored samples": [Computational Statistics & Data Analysis 50 (2006) 3222-3242] , 2007, Comput. Stat. Data Anal..

[27]  Debasis Kundu,et al.  Bivariate Birnbaum-Saunders distribution and associated inference , 2010, J. Multivar. Anal..

[28]  Gilberto A. Paula,et al.  Generalized Birnbaum‐Saunders distributions applied to air pollutant concentration , 2008 .

[29]  Debasis Kundu,et al.  Modified moment estimation for the two-parameter Birnbaum-Saunders distribution , 2003, Comput. Stat. Data Anal..

[30]  Bin Lu,et al.  Assessing local influence for nonlinear structural equation models with ignorable missing data , 2006, Comput. Stat. Data Anal..

[31]  Adnan M. Awad,et al.  Some inference results on pr(x < y) in the bivariate exponential model , 1981 .

[32]  R. Little Robust Estimation of the Mean and Covariance Matrix from Data with Missing Values , 1988 .

[33]  James R. Rieck,et al.  A log-linear model for the Birnbaum-Saunders distribution , 1991 .

[34]  Sam C. Saunders,et al.  Estimation for a family of life distributions with applications to fatigue , 1969, Journal of Applied Probability.

[35]  Pushpa L. Gupta,et al.  Failure rate of the minimum and maximum of a multivariate normal distribution , 2001 .

[36]  Víctor Leiva,et al.  A Non-Central Version of the Birnbaum-Saunders Distribution for Reliability Analysis , 2009, IEEE Transactions on Reliability.

[37]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[38]  M. Steel,et al.  BAYESIAN REGRESSION ANALYSIS WITH SCALE MIXTURES OF NORMALS , 2000, Econometric Theory.

[39]  Narayanaswamy Balakrishnan,et al.  Estimation in the Birnbaum-Saunders distribution based on scale-mixture of normals and the EM-algorithm , 2009 .