The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma

[1]  Ian Law,et al.  Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. , 2016, Neuro-oncology.

[2]  L. Kristensen,et al.  Assessment of Quantitative and Allelic MGMT Methylation Patterns as a Prognostic Marker in Glioblastoma , 2016, Journal of neuropathology and experimental neurology.

[3]  Eudocia Q Lee,et al.  The Impact of T2/FLAIR Evaluation per RANO Criteria on Response Assessment of Recurrent Glioblastoma Patients Treated with Bevacizumab , 2015, Clinical Cancer Research.

[4]  Junia C Costa,et al.  Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. , 2015, Neuro-oncology.

[5]  M. Weller,et al.  Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM , 2015, Neurology.

[6]  Maximilian Niyazi,et al.  Prognostic Significance of Dynamic 18F-FET PET in Newly Diagnosed Astrocytic High-Grade Glioma , 2015, The Journal of Nuclear Medicine.

[7]  Gereon R. Fink,et al.  Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-l-tyrosine PET , 2015, European Journal of Nuclear Medicine and Molecular Imaging.

[8]  J. Honegger,et al.  Maximizing the extent of resection and survival benefit of patients in glioblastoma surgery: high-field iMRI versus conventional and 5-ALA-assisted surgery. , 2014, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology.

[9]  W. Wick,et al.  Progression-free survival as a surrogate endpoint for overall survival in glioblastoma: a literature-based meta-analysis from 91 trials , 2013, Neuro-oncology.

[10]  Gereon R Fink,et al.  Role of O-(2-18F-Fluoroethyl)-l-Tyrosine PET as a Diagnostic Tool for Detection of Malignant Progression in Patients with Low-Grade Glioma , 2013, The Journal of Nuclear Medicine.

[11]  Hans Skovgaard Poulsen,et al.  Clinical variables serve as prognostic factors in a model for survival from glioblastoma multiforme: an observational study of a cohort of consecutive non-selected patients from a single institution , 2013, BMC Cancer.

[12]  N. Shah,et al.  Uptake of O-(2-[18F]fluoroethyl)-L-tyrosine in reactive astrocytosis in the vicinity of cerebral gliomas. , 2013, Nuclear medicine and biology.

[13]  Eugen Trinka,et al.  [18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. , 2013, Neuro-oncology.

[14]  Didier Frappaz,et al.  Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. , 2012, The Lancet. Oncology.

[15]  Nader Sanai,et al.  The Value of Glioma Extent of Resection in the Modern Neurosurgical Era , 2012, Front. Neur..

[16]  P. Rosenschöld,et al.  Photon and proton therapy planning comparison for malignant glioma based on CT, FDG-PET, DTI-MRI and fiber tracking , 2011, Acta oncologica.

[17]  H. Herzog,et al.  Prognostic impact of postoperative, pre-irradiation (18)F-fluoroethyl-l-tyrosine uptake in glioblastoma patients treated with radiochemotherapy. , 2011, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[18]  P. Rosenschöld,et al.  398 poster PHOTON ARC AND PROTON THERAPY PLANNING COMPARISON FOR HIGH GRADE GLIOMA BASED ON CT, FDG-PET AND DTI-MRI AND FIBER-TRACKING , 2011 .

[19]  G. Reifenberger,et al.  Comparison of O-(2-18F-Fluoroethyl)-l-Tyrosine and l-3H-Methionine Uptake in Cerebral Hematomas , 2010, Journal of Nuclear Medicine.

[20]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[21]  S. Goldman,et al.  POSITRON EMISSION TOMOGRAPHY‐GUIDED VOLUMETRIC RESECTION OF SUPRATENTORIAL HIGH‐GRADE GLIOMAS: A SURVIVAL ANALYSIS IN 66 CONSECUTIVE PATIENTS , 2009, Neurosurgery.

[22]  J. Mehrkens,et al.  The positive predictive value of O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment , 2008, Journal of Neuro-Oncology.

[23]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[24]  D. Louis WHO classification of tumours of the central nervous system , 2007 .

[25]  G. Reifenberger,et al.  Differential uptake of [18F]FET and [3H]l-methionine in focal cortical ischemia. , 2006, Nuclear medicine and biology.

[26]  W. Koch,et al.  Positron Emission Tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus Magnetic Resonance Imaging in the Diagnosis of Recurrent Gliomas , 2005, Neurosurgery.

[27]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[28]  Karl-Josef Langen,et al.  O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. , 2005, Brain : a journal of neurology.

[29]  Karl Herholz,et al.  Delineation of Brain Tumor Extent with [11C]l-Methionine Positron Emission Tomography , 2004, Clinical Cancer Research.

[30]  Jörg-Christian Tonn,et al.  Value of O-(2-[18F]fluoroethyl)-l-tyrosine PET for the diagnosis of recurrent glioma , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[31]  M Schwaiger,et al.  Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[32]  T. Cascino,et al.  Response criteria for phase II studies of supratentorial malignant glioma. , 1990, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.