Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit
暂无分享,去创建一个
[1] Frédéric Poupaud,et al. The pseudo-differential approach¶to finite differences revisited , 1999 .
[2] P. Gérard. Microlocal defect measures , 1991 .
[3] P. Markowich,et al. Homogenization limits and Wigner transforms , 1997 .
[4] Willy Dörfler,et al. A time- and spaceadaptive algorithm for the linear time-dependent Schrödinger equation , 1996 .
[5] J. M. Sanz-Serna,et al. A Method for the Integration in Time of Certain Partial Differential Equations , 1983 .
[6] E. Wigner. On the quantum correction for thermodynamic equilibrium , 1932 .
[7] T. Paul,et al. Sur les mesures de Wigner , 1993 .
[8] Lixin Wu,et al. DuFort--Frankel-Type Methods for Linear and Nonlinear Schrödinger Equations , 1996 .
[9] D. Pathria,et al. Pseudo-spectral solution of nonlinear Schro¨dinger equations , 1990 .
[10] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[11] Norbert J. Mauser,et al. THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .
[12] P. Gérard,et al. Mesures semi-classiques et ondes de Bloch , 1991 .
[13] Thiab R. Taha,et al. Analytical and numerical aspects of certain nonlinear evolution equations. I. Analytical , 1984 .
[14] L. Tartar. H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[15] Tony F. Chan,et al. Stable explicit schemes for equations of the Schro¨dinger type , 1986 .