Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit

Abstract. We apply Wigner-transform techniques to the analysis of difference methods for Schrödinger-type equations in the case of a small Planck constant. In this way we are able to obtain sharp conditions on the spatial-temporal grid which guarantee convergence for average values of observables as the Planck constant tends to zero. The theory developed in this paper is not based on local and global error estimates and does not depend on whether caustics develop or not. Numerical test examples are presented to help interpret the theory.

[1]  Frédéric Poupaud,et al.  The pseudo-differential approach¶to finite differences revisited , 1999 .

[2]  P. Gérard Microlocal defect measures , 1991 .

[3]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[4]  Willy Dörfler,et al.  A time- and spaceadaptive algorithm for the linear time-dependent Schrödinger equation , 1996 .

[5]  J. M. Sanz-Serna,et al.  A Method for the Integration in Time of Certain Partial Differential Equations , 1983 .

[6]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[7]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[8]  Lixin Wu,et al.  DuFort--Frankel-Type Methods for Linear and Nonlinear Schrödinger Equations , 1996 .

[9]  D. Pathria,et al.  Pseudo-spectral solution of nonlinear Schro¨dinger equations , 1990 .

[10]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[11]  Norbert J. Mauser,et al.  THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .

[12]  P. Gérard,et al.  Mesures semi-classiques et ondes de Bloch , 1991 .

[13]  Thiab R. Taha,et al.  Analytical and numerical aspects of certain nonlinear evolution equations. I. Analytical , 1984 .

[14]  L. Tartar H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[15]  Tony F. Chan,et al.  Stable explicit schemes for equations of the Schro¨dinger type , 1986 .