Nanomaterials for benign indoor environments : Electrochromics for “smart windows”, sensors for air quality, and photo-catalysts for air cleaning

Nanomaterials can be used in a number of technologies in order to accomplish benign indoor environments. This paper takes a unified view on this problem from a solar-energy-based perspective and specifically considers electrochromics for achieving good day-lighting jointly with energy efficiency, sensors aimed at air quality assessment, and photocatalysis for air cleaning. Recent results, mainly from the authors’ laboratories, are reported for all of these areas.

[1]  Gunnar A. Niklasson,et al.  Electrochromism in nickel oxide films containing Mg, Al, Si, V, Zr, Nb, Ag, or Ta , 2004 .

[2]  Claes-Göran Granqvist,et al.  Gas sensor response of pure and activated WO3 nanoparticle films made by advanced reactive gas deposition , 2006 .

[3]  T. Fujiwara,et al.  Photoinduced Changes of Adsorbed Water on a TiO2 Photocatalytic Film As Studied by 1H NMR Spectroscopy , 2003 .

[4]  Eleanor S. Lee,et al.  Application issues for large-area electrochromic windows in commercial buildings , 2000 .

[5]  J. Thornton High Rate Thick Film Growth , 1977 .

[6]  Wilhelm Warta,et al.  SHORT COMMUNICATION: Solar cell efficiency tables (version 25) , 2005 .

[7]  Stephen K. Brown,et al.  Concentrations of Volatile Organic Compounds in Indoor Air – A Review , 1994 .

[8]  Julius M. Mwabora,et al.  Structure, Composition and Morphology of Photoelectrochemically Active TiO2-xNx Thin Films Deposited by Reactive DC Magnetron Sputtering , 2004 .

[9]  Satyen K. Deb,et al.  Reminiscences on the discovery of electrochromic phenomena in transition metal oxides , 1995 .

[10]  Claes-Göran Granqvist,et al.  Photoelectrochemical Study of Nitrogen-Doped Titanium Dioxide for Water Oxidation , 2004 .

[11]  Ichiro Okura,et al.  Photocatalysis Science and Technology , 2002 .

[12]  Mari-Louise Persson Windows of Opportunities : The Glazed Area and its Impact on the Energy Balance of Buildings , 2006 .

[13]  Jiaguo Yu,et al.  Enhanced photoinduced super-hydrophilicity of the sol–gel-derived TiO2 thin films by Fe-doping , 2006 .

[14]  A. Fujishima,et al.  TiO2 Photocatalysis: A Historical Overview and Future Prospects , 2005 .

[15]  Claes-Göran Granqvist,et al.  Electrochromic coatings and devices: survey of some recent advances , 2003 .

[16]  E. Horvath Building-related illness and sick building syndrome: from the specific to the vague. , 1997, Cleveland Clinic journal of medicine.

[17]  Julius M. Mwabora,et al.  Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering , 2003 .

[18]  Andris Azens,et al.  Electrochromic devices on polyester foil , 2003 .

[19]  A. Mattsson,et al.  Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. , 2006, The journal of physical chemistry. B.

[20]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[21]  Andris Azens,et al.  Ozone coloration of Ni and Cr oxide films , 2003 .

[22]  Claes-Göran Granqvist,et al.  Out of a niche , 2006, Nature materials.

[23]  Claes G. Granqvist,et al.  Handbook of inorganic electrochromic materials , 1995 .

[24]  Harland G. Tompkins,et al.  Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study , 1992 .

[25]  L. Kish,et al.  Gas Phase Nanoparticle Synthesis , 2004 .

[26]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[27]  C. Granqvist,et al.  Transparent and conducting ITO films: new developments and applications , 2002 .

[28]  Eiichi Kojima,et al.  Light-induced amphiphilic surfaces , 1997, Nature.

[29]  Eduard Llobet,et al.  Ethanol and H2S gas detection in air and in reducing and oxidising ambience: application of pattern recognition to analyse the output from temperature-modulated nanoparticulate WO3 gas sensors , 2005 .

[30]  Gunnar A. Niklasson,et al.  Flexible foils with electrochromic coatings: science, technology and applications , 2005 .

[31]  C. Granqvist,et al.  Electrochromic smart windows: energy efficiency and device aspects , 2003, Renewable Energy.

[32]  C. Granqvist,et al.  Materials science for solar energy conversion systems , 1991 .

[33]  Laszlo B. Kish,et al.  Comparison of Classical and Fluctuation-Enhanced Gas Sensing with PdxWO3 Nanoparticle Films , 2006 .

[34]  Gunnar A. Niklasson,et al.  Electrochemical and optical properties of sputter deposited Ir–Ta and Ir oxide thin films , 2006 .

[35]  C. Granqvist,et al.  Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors , 2005 .

[36]  Claes-Göran Granqvist,et al.  Electrochromic tungsten oxide films: Review of progress 1993–1998 , 2000 .

[37]  Eva Olsson,et al.  Reactively Sputter‐Deposited Titanium Oxide Coatings with Parallel Penniform Microstructure , 2000 .

[38]  Andrew P. Jones,et al.  Indoor air quality and health , 1999 .

[39]  Laszlo B. Kish,et al.  Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues , 2000 .

[40]  R. Buhrman,et al.  Ultrafine metal particles , 1976 .

[41]  L.B. Kish,et al.  Detecting harmful gases using fluctuation-enhanced sensing with Taguchi sensors , 2005, IEEE Sensors Journal.

[42]  Gunnar A. Niklasson,et al.  LOGNORMAL SIZE DISTRIBUTIONS IN PARTICLE GROWTH PROCESSES WITHOUT COAGULATION , 1998 .