The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics

Starting with a “relativistic” Schrödinger Hamiltonian for neutral gravitating particles, we prove that as the particle numberN→∞ and the gravitation constantG→0 we obtain the well known semiclassical theory for the ground state of stars. For fermions, the correct limit is to fixGN2/3 and the Chandrasekhar formula is obtained. For bosons the correct limit is to fixGN and a Hartree type equation is obtained. In the fermion case we also prove that the semiclassical equation has a unique solution — a fact which had not been established previously.

[1]  R. Fowler On dense matter , 1926 .

[2]  E. A. Milne,et al.  The Highly Collapsed Configurations of a Stellar Mass , 1931 .

[3]  The maximum mass of ideal white dwarfs , 1931 .

[4]  S. Chandrasekhar XLVIII. The density of white dwarf stars , 1931 .

[5]  Edwin E. Salpeter,et al.  MODELS FOR ZERO-TEMPERATURE STARS , 1961 .

[6]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[7]  Tosio Kato Perturbation theory for linear operators , 1966 .

[8]  S. Bonazzola,et al.  Systems of self-gravitating particles in general relativity , 1969 .

[9]  R. Beals,et al.  Variational solutions of some nonlinear free boundary problems , 1971 .

[10]  R. Weder Spectral analysis of pseudodifferential operators , 1975 .

[11]  J. Herbst Addendum: Spectral theory of the operator $(p^{2}+m^{2})^{1/2}-Ze^{2}/r$ , 1977 .

[12]  E. Lieb,et al.  The Thomas-Fermi theory of atoms, molecules and solids , 1977 .

[13]  I. Herbst Spectral theory of the operator (p2+m2)1/2−Ze2/r , 1977 .

[14]  E. Lieb Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation , 1977 .

[15]  E. Lieb The Number of Bound States of One-Body Schroedinger Operators and the Weyl Problem (代数解析学の最近の発展) , 1979 .

[16]  E. Lieb,et al.  Improved Lower Bound on the Indirect Coulomb Energy , 1981 .

[17]  E. Lieb Thomas-fermi and related theories of atoms and molecules , 1981 .

[18]  V. Kovalenko,et al.  Schrödinger operators with ll/2w(Rl) ‐potentials , 1981 .

[19]  Elliott H. Lieb,et al.  Variational principle for many-fermion systems , 1981 .

[20]  Erratum: Thomas-Fermi and related theories of atoms and molecules , 1982 .

[21]  I. Daubechies An uncertainty principle for fermions with generalized kinetic energy , 1983 .

[22]  W. Ni Uniqueness of solutions of nonlinear Dirichlet problems , 1983 .

[23]  Elliott H. Lieb,et al.  Density Functionals for Coulomb Systems , 1983 .

[24]  I. Daubechies,et al.  One-electron relativistic molecules with Coulomb interaction , 1983 .

[25]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[26]  W. Thirring Bosonic black holes , 1983 .

[27]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[28]  E. Lieb,et al.  Gravitational collapse in quantum mechanics with relativistic kinetic energy , 1984 .

[29]  J. Conlon The ground state energy of a classical gas , 1984 .

[30]  Norbert Straumann,et al.  General Relativity and Relativistic Astrophysics , 1984 .

[31]  S. Chandrasekhar On stars, their evolution and their stability. , 1984, Science.

[32]  C. Fefferman,et al.  Relativistic Stability of Matter - I , 1986 .

[33]  V. Müller N. Straumann: General relativity and relativistic astrophysics. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo 1984. XIII + 459 Seiten. DM 112,- , 1987 .