Wigner-based formulation of the chirplet transform

Using the Wigner distribution, we derive and analyze a matrix formulation for the chirplet transform, a signal analysis tool that generalizes the wavelet and short-time Fourier transforms. The formulation expresses the translations, scalings, and shears of the chirplet transform in terms of affine matrix transformations on the time-frequency plane. Our approach leads naturally to several new signal transforms, which we derive, analyze, and extend.

[1]  Olivier Rioul,et al.  Time-scale energy distributions: a general class extending wavelet transforms , 1992, IEEE Trans. Signal Process..

[2]  Douglas L. Jones,et al.  Time-frequency window leakage in the short-time Fourier transform , 1987 .

[3]  Ajem Guido Janssen,et al.  On the locus and spread of pseudo-density functions in the time-frequency plane , 1982 .

[4]  A. Berthon Operator Groups and Ambiguity Functions in Signal Processing , 1989 .

[5]  Richard Baraniuk,et al.  Measuring time-frequency information and complexity using the Renyi entropies , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[6]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[7]  B. Torrésani Wavelets associated with representations of the affine Weyl–Heisenberg group , 1991 .

[8]  G. Folland Harmonic analysis in phase space , 1989 .

[9]  Thierry Paul,et al.  Wave functions on subgroups of the group of affine canonical transformations , 1984 .

[10]  Douglas L. Jones,et al.  A high resolution data-adaptive time-frequency representation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[11]  Douglas L. Jones,et al.  Shear madness: new orthonormal bases and frames using chirp functions , 1993, IEEE Trans. Signal Process..

[12]  Thierry Paul,et al.  Functions analytic on the half‐plane as quantum mechanical states , 1984 .

[13]  Douglas L. Jones,et al.  Unitary equivalence: a new twist on signal processing , 1995, IEEE Trans. Signal Process..

[14]  Simon Haykin,et al.  The chirplet transform: physical considerations , 1995, IEEE Trans. Signal Process..

[15]  A. K. Booer,et al.  Fast numerical algorithm for the recompression of dispersed time signals , 1977 .

[16]  Douglas L. Jones,et al.  New dimensions in wavelet analysis , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.