Large time behavior in a diffusive SEIR epidemic model with general incidence

Abstract This paper is concerned with a diffusive susceptible–exposed–infected–recovered (SEIR) epidemic model with a class of general incidence function f ( S , I ) . With the aid of the constructed Lyapunov functionals, we study the large time behavior of the disease free endemic equilibrium (DFE) and the endemic equilibrium (EE) respectively. Moreover, the convergence rate of DFE is derived in this paper.

[1]  H. Hethcote,et al.  Some epidemiological models with nonlinear incidence , 1991, Journal of mathematical biology.

[2]  Rui Peng,et al.  Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model☆ , 2017 .

[3]  J. Xiong,et al.  Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment , 2020, Discrete & Continuous Dynamical Systems - B.

[4]  Yuan Lou,et al.  Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments , 2017 .

[5]  Chengxia Lei,et al.  Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence , 2019, Appl. Math. Lett..

[6]  Liguang Xu,et al.  Stability of a fractional order SEIR model with general incidence , 2020, Appl. Math. Lett..

[7]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[8]  Keng Deng,et al.  Dynamics of a susceptible–infected–susceptible epidemic reaction–diffusion model , 2016 .

[9]  Bo Li,et al.  Asymptotic profiles of endemic equilibrium of a diffusive SIS epidemic system with nonlinear incidence function in a heterogeneous environment , 2020 .

[10]  K. Hattaf,et al.  Mathematical analysis of a virus dynamics model with general incidence rate and cure rate , 2012 .

[11]  Nung Kwan Yip,et al.  Long time behavior of some epidemic models , 2011 .

[12]  Michael Winkler,et al.  Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics , 2016 .

[13]  Hai-Yang Jin,et al.  Global stability of prey-taxis systems , 2017 .

[14]  Z. Du,et al.  A priori L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} estimates for solutions of a clas , 2015, Journal of Mathematical Biology.

[15]  Yuan Lou,et al.  Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model , 2008 .

[16]  Florinda Capone,et al.  On the nonlinear stability of an epidemic SEIR reaction-diffusion model , 2013 .

[17]  Rui Peng,et al.  A reaction–diffusion SIS epidemic model in a time-periodic environment , 2012 .

[18]  J. P. Lasalle Some Extensions of Liapunov's Second Method , 1960 .

[19]  Xiaodan Chen,et al.  Global stability in a diffusive cholera epidemic model with nonlinear incidence , 2021, Appl. Math. Lett..

[20]  Rui Peng,et al.  On a Diffusive Susceptible-Infected-Susceptible Epidemic Model with Mass Action Mechanism and Birth-Death Effect: Analysis, Simulations, and Comparison with Other Mechanisms , 2018, SIAM J. Appl. Math..

[21]  Rui Peng,et al.  Concentration profile of endemic equilibrium of a reaction–diffusion–advection SIS epidemic model , 2017 .

[22]  P. C. Dunne,et al.  A semilinear parabolic system arising in the theory of superconductivity , 1981 .