On the cofiniteness of generalized local cohomology modules

Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$ and $M$, $N$ two finitely generated $R$-modules. The aim of this paper is to investigate the $I$-cofiniteness of generalized local cohomology modules $\displaystyle H^j_I(M,N)=\dlim\Ext^j_R(M/I^nM,N)$ of $M$ and $N$ with respect to $I$. We first prove that if $I$ is a principal ideal then $H^j_I(M,N)$ is $I$-cofinite for all $M, N$ and all $j$. Secondly, let $t$ be a non-negative integer such that $\dim\Supp(H^j_I(M,N))\le 1 \text{for all} j<t.$ Then $H^j_I(M,N)$ is $I$-cofinite for all $j<t$ and $\Hom(R/I,H^t_I(M,N))$ is finitely generated. Finally, we show that if $\dim(M)\le 2$ or $\dim(N)\le 2$ then $H^j_I(M,N)$ is $I$-cofinite for all $j$.

[1]  N. Shirali,et al.  On the Noetherian dimension of Artinian modules with homogeneous uniserial dimension , 2017 .

[2]  S. Payrovi,et al.  On the cofiniteness of generalized local cohomology modules , 2013 .

[3]  Ken‐ichiroh Kawasaki On a category of cofinite modules which is Abelian , 2011 .

[4]  K. Bahmanpour,et al.  Cofiniteness of local cohomology modules for ideals of small dimension , 2009 .

[5]  K. Bahmanpour,et al.  On the cofiniteness of local cohomology modules , 2008 .

[6]  N. Hoang ON THE ASSOCIATED PRIMES AND THE SUPPORT OF GENERALIZED LOCAL COHOMOLOGY MODULES , 2008 .

[7]  Nguyen Tu Cuong,et al.  On the vanishing and the finiteness of supports of generalized local cohomology modules , 2007, 0705.4553.

[8]  M. Chardin,et al.  A DUALITY THEOREM FOR GENERALIZED LOCAL COHOMOLOGY , 2007, 0705.2662.

[9]  M. Chardin,et al.  GENERALIZED LOCAL COHOMOLOGY AND REGULARITY OF EXT MODULES , 2007, math/0701509.

[10]  A. Mafi On the Associated Primes of Generalized Local Cohomology Modules , 2005, math/0510274.

[11]  Leif Melkersson Modules cofinite with respect to an ideal , 2005 .

[12]  Nguyen Tu Cuong,et al.  SOME FINITE PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES , 2005 .

[13]  Anurag Singh Associated primes of local cohomology modules , 2004, math/0406356.

[14]  J. Herzog,et al.  Duality and vanishing of generalized local cohomology , 2003 .

[15]  T. Marley,et al.  Cofiniteness and associated primes of local cohomology modules , 2002, math/0209216.

[16]  T. Marley The associated primes of local cohomology modules over rings of small dimension , 2001 .

[17]  M. Brodmann,et al.  A finiteness result for associated primes of local cohomology modules , 2000 .

[18]  Liam O'Carroll,et al.  LOCAL COHOMOLOGY: AN ALGEBRAIC INTRODUCTION WITH GEOMETRIC APPLICATIONS (Cambridge Studies in Advanced Mathematics 60) , 1999 .

[19]  Leif Melkersson Properties of cofinite modules and applications to local cohomology , 1999, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  Ken‐ichiroh Kawasaki Cofiniteness of Local Cohomology Modules for Principal Ideals , 1998 .

[21]  R. Y. Sharp,et al.  Local Cohomology: an algebraic introduction with geometric applications: Bibliography , 1998 .

[22]  D. Delfino,et al.  Cofinite modules and local cohomology , 1997 .

[23]  KEN-ICHI Yoshida Cofiniteness of local cohomology modules for ideals of dimension one , 1997, Nagoya Mathematical Journal.

[24]  Ken‐ichiroh Kawasaki On the finiteness of Bass numbers of local cohomology modules , 1996 .

[25]  Leif Melkersson Some applications of a criterion for artinianness of a module , 1995 .

[26]  S. Yassemi Generalized section functors , 1994 .

[27]  D. Delfino On the cofiniteness of local cohomology modules , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  Leif Melkersson On asymptotic stability for sets of prime ideals connected with the powers of an ideal , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  M. H. B. Zadeh A common generalization of local cohomology theories , 1980, Glasgow Mathematical Journal.

[30]  Naoyoshi Suzuki On the generalized local cohomology and its duality , 1978 .

[31]  R. Hartshorne Affine duality and cofiniteness , 1970 .