Highly Nonlinear Dispersion Increasing Fiber for Femtosecond Pulse Generation

The optical pulse evolution in a highly nonlinear normal dispersion-increasing fiber has been considered, both experimentally and theoretically. It was found that large spectral broadening in tapered waveguides could occur without temporal instabilities and impose the linear frequency modulation, i.e., chirp, required for high-quality pulse compression. The pedestal-free pulses have been demonstrated after dechirping in a standard single-mode fiber.

[1]  K. Inoue Four-wave mixing in an optical fiber in the zero-dispersion wavelength region , 1992 .

[2]  Sergei K. Turitsyn,et al.  Dispersion-managed solitons in fibre systems and lasers , 2012 .

[3]  A. Ferrari,et al.  Ultrafast lasers mode-locked by nanotubes and graphene , 2012 .

[4]  Hermann A. Haus,et al.  Ultrashort-pulse fiber ring lasers , 1997 .

[5]  Sarah Rothstein,et al.  Optical Solitons From Fibers To Photonic Crystals , 2016 .

[6]  Sergei K Turitsyn,et al.  Theory of parabolic pulse generation in tapered fiber. , 2007, Optics letters.

[7]  Tino Eidam,et al.  High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system. , 2009, Optics express.

[8]  Frank W. Wise,et al.  Properties of normal-dispersion femtosecond fiber lasers , 2008 .

[9]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[10]  Charles V. Shank,et al.  Compression of optical pulses chirped by self-phase modulation in fibers , 1984 .

[11]  S V Smirnov,et al.  Linear compression of chirped pulses in optical fibre with large step-index mode area. , 2015, Optics express.

[12]  R. Stolen,et al.  Optical wave breaking of pulses in nonlinear optical fibers. , 1985, Optics letters.

[13]  Oleg G. Okhotnikov,et al.  Semiconductor Disk Lasers: Physics and Technology , 2010 .

[14]  H. Haus Mode-locking of lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Sergei K. Turitsyn,et al.  Experiments on the generation of parabolic pulses in fibers with length-varying normal chromatic dispersion , 2007 .

[16]  Igor O. Zolotovskii,et al.  NONLINEAR OPTICAL PHENOMENA: Dynamics of similariton pulses in length-inhomogeneous active fibres , 2010 .

[17]  Masataka Nakazawa,et al.  Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion. , 2004, Optics letters.

[18]  Dmitry A. Korobko,et al.  High-repetition-rate pulse generation and compression in dispersion decreasing fibers , 2013 .

[19]  Hai-feng Liu,et al.  Higher order soliton pulse compression in dispersion-decreasing optical fibers , 1997 .

[20]  L. Orsila,et al.  Picosecond SESAM-based ytterbium mode-locked fiber lasers , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  Guy Millot,et al.  Parabolic pulse generation with active or passive dispersion decreasing optical fibers. , 2007, Optics express.

[22]  Dmitry A. Korobko,et al.  Optical amplifier with tailored dispersion for energy scaling of similaritons , 2013 .

[23]  N. Kumano,et al.  Pulse compression techniques using highly nonlinear fibers , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[24]  Dmitry A. Korobko,et al.  Formation of parabolic pulses in inhomogeneous fiber optical amplifiers , 2013 .

[25]  D. Richardson,et al.  Soliton pulse compression in dispersion-decreasing fiber. , 1993, Optics letters.

[26]  Ian H. White,et al.  Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes , 2010 .

[27]  Oleg G. Okhotnikov,et al.  Fiber Lasers: OKHOTNIKOV:FIBER LASERS O-BK , 2012 .