Factorized Solution of Lyapunov Equations Based on Hierarchical Matrix Arithmetic

We investigate the numerical solution of large-scale Lyapunov equations with the sign function method. Replacing the usual matrix inversion, addition, and multiplication by formatted arithmetic for hierarchical matrices, we obtain an implementation that has linear-polylogarithmic complexity and memory requirements. The method is well suited for Lyapunov operators arising from FEM and BEM approximations to elliptic differential operators. With the sign function method it is possible to obtain a low-rank approximation to a full-rank factor of the solution directly. The task of computing such a factored solution arises, e.g., in model reduction based on balanced truncation. The basis of our method is a partitioned Newton iteration for computing the sign function of a suitable matrix, where one part of the iteration uses formatted arithmetic while the other part directly yields approximations to the full-rank factor of the solution. We discuss some variations of our method and its application to generalized Lyapunov equations. Numerical experiments show that the method can be applied to problems of order up to (105) on workstations.

[1]  Jacob K. White,et al.  Reduction of Large Circuit Models Via Low Rank Approximate Gramians , 2001 .

[2]  M. T. Qureshi,et al.  Lyapunov Matrix Equation in System Stability and Control , 2008 .

[3]  James Demmel,et al.  Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.

[4]  W. Hackbusch,et al.  A Sparse ℋ-Matrix Arithmetic. , 2000, Computing.

[5]  Marlis Hochbruck,et al.  Preconditioned Krylov Subspace Methods for Lyapunov Matrix Equations , 1995, SIAM J. Matrix Anal. Appl..

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  P. Benner,et al.  Solving large-scale control problems , 2004, IEEE Control Systems.

[8]  Thilo Penzl,et al.  A Multi-Grid Method for Generalized Lyapunov Equations , 2005 .

[9]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.

[10]  G. Hewer,et al.  The sensitivity of the stable Lyapunov equation , 1987, 26th IEEE Conference on Decision and Control.

[11]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[12]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[13]  K. Jbilou,et al.  Projection methods for large Lyapunov matrix equations , 2006 .

[14]  Lars Grasedyck,et al.  Existence of a low rank or ℋ︁‐matrix approximant to the solution of a Sylvester equation , 2004, Numer. Linear Algebra Appl..

[15]  W. Armand Layne,et al.  Introduction to Matrices , 1984 .

[16]  Tatjana Stykel,et al.  Gramian-Based Model Reduction for Descriptor Systems , 2004, Math. Control. Signals Syst..

[17]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[18]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[19]  Lars Grasedyck,et al.  Theorie und Anwendungen Hierarchischer Matrizen , 2006 .

[20]  E. Wachspress Iterative solution of the Lyapunov matrix equation , 1988 .

[21]  Vasile Sima,et al.  Algorithms for Linear-Quadratic Optimization , 2021 .

[22]  R. A. Smith Matrix Equation $XA + BX = C$ , 1968 .

[23]  Enrique S. Quintana-Ortí,et al.  Solving stable generalized Lyapunov equations with the matrix sign function , 1999, Numerical Algorithms.

[24]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[25]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[26]  R. Byers Solving the algebraic Riccati equation with the matrix sign function , 1987 .

[27]  K. Poolla,et al.  NUMERICAL SOLUTION OF THE LYAPUNOV EQUATION BY APPROXIMATE POWER ITERATION , 1996 .

[28]  Enrique S. Quintana-Ortí,et al.  Balanced Truncation Model Reduction of Large-Scale Dense Systems on Parallel Computers , 2000 .

[29]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[30]  I. Rosen,et al.  A multilevel technique for the approximate solution of operator Lyapunov and algebraic Riccati equations , 1995 .

[31]  Wolfgang Hackbusch,et al.  A Multigrid Method to Solve Large Scale Sylvester Equations , 2007, SIAM J. Matrix Anal. Appl..

[32]  I. Jaimoukha,et al.  Krylov subspace methods for solving large Lyapunov equations , 1994 .

[33]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[34]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[35]  Enrique S. Quintana-Ortí,et al.  Solving Large Sparse Lyapunov Equations on Parallel Computers (Research Note) , 2002, Euro-Par.

[36]  A. Varga,et al.  Model reduction software in the SLICOT library , 2000, CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537).

[37]  Boris N. Khoromskij,et al.  Solution of Large Scale Algebraic Matrix Riccati Equations by Use of Hierarchical Matrices , 2003, Computing.

[38]  Sabine Van Huffel,et al.  SLICOT—A Subroutine Library in Systems and Control Theory , 1999 .

[39]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[40]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[41]  Jacob K. White,et al.  Low-Rank Solution of Lyapunov Equations , 2004, SIAM Rev..

[42]  Danny C. Sorensen,et al.  A Modified Low-Rank Smith Method for Large-Scale Lyapunov Equations , 2004, Numerical Algorithms.

[43]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[44]  Y. Zhou,et al.  On the decay rate of Hankel singular values and related issues , 2002, Syst. Control. Lett..

[45]  Judith Gardiner,et al.  A generalization of the matrix sign function solution for algebraic Riccati equations , 1985, 1985 24th IEEE Conference on Decision and Control.

[46]  Thilo Penzl Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case , 2000 .

[47]  F. R. Gantmakher The Theory of Matrices , 1984 .

[48]  N. Higham Computing the polar decomposition with applications , 1986 .

[49]  B. Datta Numerical methods for linear control systems : design and analysis , 2004 .

[50]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[51]  Thilo Penzl Algorithms for model reduction of large dynamical systems , 2006 .

[52]  Enrique S. Quintana-Ortí,et al.  Parallel Distributed Solvers for Large Stable Generalized Lyapunov Equations , 1999, Parallel Process. Lett..

[53]  Enrique S. Quintana-Ortí,et al.  Solving Stable Sylvester Equations via Rational Iterative Schemes , 2006, J. Sci. Comput..

[54]  Christian H. Bischof,et al.  Algorithm 782: codes for rank-revealing QR factorizations of dense matrices , 1998, TOMS.

[55]  R. Byers,et al.  The Matrix Sign Function Method and the Computation of Invariant Subspaces , 1997, SIAM J. Matrix Anal. Appl..

[56]  Daniel Boley,et al.  Numerical Methods for Linear Control Systems , 1994 .

[57]  R. Schneider,et al.  Sonderforschungsbereich 393 Numerische Simulation auf massiv parallelen Rechnern , 2001 .