CONCURRENT FORMATION OF CARBON AND SILICATE DUST IN NOVA V1280 SCO

We present infrared multi-epoch observations of the dust forming nova V1280 Sco over $\sim$2000 days from the outburst. The temporal evolution of the infrared spectral energy distributions at 1272, 1616 and 1947 days can be explained by the emissions produced by amorphous carbon dust of mass (6.6--8.7)$\times$10$^{-8}$M$_{\odot}$ with a representative grain size of 0.01$~\mu$m and astronomical silicate dust of mass (3.4--4.3)$\times$10$^{-7}$M$_{\odot}$ with a representative grain size of 0.3--0.5$~\mu$m. Both of these dust species travel farther away from the white dwarf without an apparent mass evolution throughout those later epochs. The dust formation scenario around V1280 Sco suggested from our analyses is that the amorphous carbon dust is formed in the nova ejecta followed by the formation of silicate dust in the expanding nova ejecta or as a result of the interaction between the nova wind and the circumstellar medium.

[1]  John K. Davies,et al.  Infrared spectroscopy of Nova Cassiopeiae 1993 — II. Evolution of the dust , 1997 .

[2]  Atlanta,et al.  UvA-DARE ( Digital Academic Repository ) Crystalline silicate dust around evolved stars . II . The crystalline silicate complexes , 2022 .

[3]  P. Roche,et al.  An investigation of the interstellar extinction. I: Towards dusty WC Wolf-Rayet stars , 1984 .

[4]  Shinji Mitani,et al.  Performance Estimation of the Mid-Infrared Camera and Spectrometer Aboard SPICA , 2015 .

[5]  Olivier Chesneau,et al.  VLTI monitoring of the dust formation event of the Nova V1280 Scorpii , 2008, 0804.4129.

[6]  R. Gehrz,et al.  Nucleosynthesis in Classical Novae and Its Contribution to the Interstellar Medium , 1998 .

[7]  Atsushi Yamazaki,et al.  TRISPEC: A Simultaneous Optical and Near‐Infrared Imager, Spectrograph, and Polarimeter , 2005 .

[8]  Mark R. Kidger,et al.  Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra , 1999 .

[9]  David A. Williams,et al.  Excess infrared emission from large interstellar carbon grains , 1988 .

[10]  J. M. C. Rawlings,et al.  Infrared spectroscopy of Nova Cassiopeiae 1993 ¿ IV. A closer look at the dust , 2005 .

[11]  S. Oh,et al.  The infrared astronomical mission AKARI , 2007, 0708.1796.

[12]  Shigeyuki Sako,et al.  COMICS: the cooled mid-infrared camera and spectrometer for the Subaru telescope , 2000, Astronomical Telescopes and Instrumentation.

[13]  J. Truran,et al.  Evolutionary sequences for Nova V1974 Cygni using new nuclear reaction rates and opacities , 1998 .

[14]  B. Meyer,et al.  Condensation of Carbon in Radioactive Supernova Gas , 1999, Science.

[15]  S. Kwok,et al.  Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features , 2011, Nature.

[16]  Munetaka Ueno,et al.  Near-Infrared and Mid-Infrared Spectroscopy with the Infrared Camera (IRC) for AKARI , 2007, 0708.4290.

[17]  M. F. Bode,et al.  The expanding dusty bipolar nebula around the nova V1280 Scorpi , 2012, 1207.5301.

[18]  P. Roche,et al.  The mid-infrared spectral development of Nova Cen 1986 , 1994 .

[19]  The rich 6 to 9 vec mu m spectrum of interstellar PAHs , 2002, astro-ph/0205400.

[20]  Ralf Siebenmorgen,et al.  High Resolution Infrared Spectroscopy in Astronomy, Proceedings of an ESO Workshop held at Garching, Germany, 18-21 November 2003 , 2005 .

[21]  L. Colangeli,et al.  Optical constants of cosmic carbon analogue grains — I. Simulation of clustering by a modified continuous distribution of ellipsoids , 1996 .

[22]  C. H. Smith,et al.  An investigation of the 3-μm emission bands in planetary nebulae , 1996 .

[23]  J. Bernard-Salas,et al.  The Unusual Hydrocarbon Emission from the Early Carbon Star HD 100764: The Connection between Aromatics and Aliphatics , 2007, 0705.0905.

[24]  K. Nomoto,et al.  Formation of dust grains in the ejecta of SN 1987A. II. , 1989 .

[25]  E. Dwek,et al.  Energy Deposition and Photoelectric Emission from the Interaction of 10 eV to 1 MeV Photons with Interstellar Dust Particles , 1996 .

[26]  B. Draine Tabulated optical properties of graphite and silicate grains , 1985 .

[27]  Mamoru Doi,et al.  Revised specifications and current development status of MIMIZUKU: the mid-infrared instrument for the TAO 6.5-m telescope , 2014, Astronomical Telescopes and Instrumentation.

[28]  Mariko Kato,et al.  Optically thick winds and nova outbursts , 1994 .

[29]  Takashi Onaka,et al.  Supplementary information on the near-infrared spectroscopic data of the infrared camera (IRC) onboard AKARI , 2012, Other Conferences.

[30]  Akira Arai,et al.  Discovery of Multiple High-Velocity Narrow Circumstellar NaI D Lines in Nova V1280 Sco , 2010 .

[31]  X-Ray Halos and Large Grains in the Diffuse Interstellar Medium , 2001, astro-ph/0102149.

[32]  A. Cassatella,et al.  Physics of Classical Novae , 1990 .

[33]  C. Woodward,et al.  The Infrared Development of V705 Cassiopeiae , 1998 .

[34]  Hidehiro Kaneda,et al.  The next-generation infrared astronomy mission SPICA under the new framework , 2014, Astronomical Telescopes and Instrumentation.

[35]  T. J. Jones,et al.  Commissioning results of MMT-POL: the 1-5um imaging polarimeter leveraged from the AO secondary of the 6.5m MMT , 2012, Other Conferences.

[36]  A. Arai,et al.  Five-year optical and near-infrared observations of the extremely slow nova V1280 Scorpii , , 2012, 1203.6725.

[37]  A. Tielens,et al.  Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. , 1989, The Astrophysical journal. Supplement series.

[38]  R. C. Gilman Planck Mean Cross-Sections for Four Grain Materials , 1974 .

[39]  Mark Chun,et al.  MIRAO: a mid-IR adaptive optics system design for TMT , 2006, SPIE Astronomical Telescopes + Instrumentation.

[40]  N. Takeyama,et al.  The Infrared Camera (IRC) for AKARI–Design and Imaging Performance , 2007, 0705.4144.

[41]  L. Colangeli,et al.  Amorphous carbon and the unidentified infrared bands , 1987 .

[42]  M. Greenhouse,et al.  The peculiar infrared temporal development of Nova Vulpeculae 1987 (QV Vulpeculae) , 1992 .

[43]  M. Schultheis,et al.  Modelling the Galactic Interstellar Extinction Distribution in Three Dimensions , 2005, astro-ph/0604427.

[44]  J. Hackwell,et al.  The evolution of the dust shell of Nova Serpentis 1978 , 1980 .

[45]  Dust and the Type II-Plateau Supernova 2004et , 2009, 0904.3737.

[46]  J. Andreae,et al.  Element abundances of nova PW vulpeculae , 1990 .

[47]  M. F. Bode,et al.  EXQUISITE NOVA LIGHT CURVES FROM THE SOLAR MASS EJECTION IMAGER (SMEI) , 2010, 1009.1737.

[48]  Ramkrishna Das,et al.  Near-infrared studies of V1280 Sco (Nova Scorpii 2007) , 2008, 0809.4338.

[49]  J. Hecht,et al.  Signatures of aging silicate dust , 1990 .

[50]  C. Bauschlicher,et al.  The rich 6 to 9m spectrum of interstellar PAHs , 2002 .