An incremental Hammerstein-like modeling approach for the decoupled creep, vibration and hysteresis dynamics of piezoelectric actuator
暂无分享,去创建一个
Yi Dong | Feng Gao | Han-Xiong Li | Xianchao Zhao | Chenkun Qi | Shaoyuan Li | Shaoyuan Li | Chenkun Qi | Han-Xiong Li | F. Gao | Xianchao Zhao | Yi Dong
[1] Rudolf J. Seethaler,et al. Sensorless Position Control For Piezoelectric Actuators Using A Hybrid Position Observer , 2014, IEEE/ASME Transactions on Mechatronics.
[2] Limin Zhu,et al. Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses , 2011 .
[3] Qingsong Xu,et al. Hysteresis modeling and compensation of a piezostage using least squares support vector machines , 2011 .
[4] Sheng Chen,et al. Local regularization assisted orthogonal least squares regression , 2006, Neurocomputing.
[5] Danyang Wang,et al. Optical properties of epitaxial and polycrystalline Sr[sub 1.8]Ca[sub 0.2]NaNb[sub 5]O[sub 15] thin-film waveguides grown by pulsed laser deposition , 2006 .
[6] Aristides A. G. Requicha,et al. Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation , 2008, IEEE Transactions on Automation Science and Engineering.
[7] Peiyue Li,et al. A simple fuzzy system for modelling of both rate-independent and rate-dependent hysteresis in piezoelectric actuators , 2013 .
[8] Er-Wei Bai. An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..
[9] N. Jalili,et al. Underlying memory-dominant nature of hysteresis in piezoelectric materials , 2006 .
[10] Fouad Giri,et al. Parametric identification of nonlinear hysteretic systems , 2009 .
[11] S. Devasia,et al. Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.
[12] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[13] Khai D. T. Ngo,et al. A Hammerstein-based dynamic model for hysteresis phenomenon , 1997 .
[14] Zhao-Tong Wu,et al. Precision control of piezoelectric actuator using support vector regression nonlinear model and neural networks , 2005, 2005 International Conference on Machine Learning and Cybernetics.
[15] R. Ben Mrad,et al. A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .
[16] Reinder Banning,et al. Modeling piezoelectric actuators , 2000 .
[17] Qingze Zou,et al. Iterative control approach to compensate for the hysteresis and the vibrational dynamics effects of piezo actuators , 2006, 2006 American Control Conference.
[18] Yuansheng Chen,et al. A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[19] Georg Schitter,et al. Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy , 2004, IEEE Transactions on Control Systems Technology.
[20] T.-J. Yeh,et al. Modeling and Identification of Hysteresis in Piezoelectric Actuators , 2006 .
[21] Ping Ge,et al. Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..
[22] Enrique Baeyens,et al. Identification of block-oriented nonlinear systems using orthonormal bases , 2004 .
[23] K. Dirscherl,et al. Modeling the hysteresis of a scanning probe microscope , 2000 .
[24] Yangmin Li,et al. Dynamic compensation and H ∞ control for piezoelectric actuators based on the inverse Bouc-Wen model , 2014 .
[25] Er-Wei Bai,et al. Convergence of the iterative Hammerstein system identification algorithm , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).
[26] Karl Johan Åström,et al. Design and Modeling of a High-Speed AFM-Scanner , 2007, IEEE Transactions on Control Systems Technology.
[27] Shaoyuan Li,et al. Hammerstein Modeling with Structure Identification for Multi-input Multi-output Nonlinear Industrial Processes , 2011 .
[28] Ju H. Park,et al. Precise tracking control of piezoelectric actuators based on a hysteresis observer , 2012 .
[29] Xinliang Zhang,et al. A hybrid model for rate-dependent hysteresis in piezoelectric actuators , 2010 .
[30] Hewon Jung,et al. Tracking control of piezoelectric actuators , 2001 .
[31] T. Söderström,et al. Instrumental-variable methods for identification of Hammerstein systems , 1982 .
[32] Chenkun Qi,et al. A time/space separation-based Hammerstein modeling approach for nonlinear distributed parameter processes , 2009, Comput. Chem. Eng..
[33] D. Croft,et al. Vibration compensation for high speed scanning tunneling microscopy , 1999 .
[34] Santosh Devasia,et al. Hysteresis and Vibration Compensation for Piezoactuators , 1998 .
[35] David Jiles,et al. Theory of ferromagnetic hysteresis: determination of model parameters from experimental hysteresis loops , 1989 .
[36] Ulrich Gabbert,et al. Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach , 2013 .
[37] Yuen Kuan Yong,et al. Design, Identification, and Control of a Flexure-Based XY Stage for Fast Nanoscale Positioning , 2009, IEEE Transactions on Nanotechnology.
[38] Yonghong Tan,et al. Diagonal recurrent neural network with modified backlash operators for modeling of rate-dependent hysteresis in piezoelectric actuators , 2008 .
[39] Santosh Devasia,et al. A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.
[40] C. J. Chen,et al. Electromechanical deflections of piezoelectric tubes with quartered electrodes , 1992 .
[41] Zhen Zhang,et al. A Hammerstein-based model for rate-dependent hysteresis in piezoelectric actuator , 2012, 2012 24th Chinese Control and Decision Conference (CCDC).
[42] C. Su,et al. An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.
[43] Wei Tech Ang,et al. Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications , 2007, IEEE/ASME Transactions on Mechatronics.
[44] Xiongbiao Chen,et al. A Survey of Modeling and Control of Piezoelectric Actuators , 2013 .
[45] Philippe Lutz,et al. Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers , 2010, IEEE Transactions on Automation Science and Engineering.
[46] Sheng Chen,et al. Robust nonlinear model identification methods using forward regression , 2003, IEEE Trans. Syst. Man Cybern. Part A.
[47] Srinivasa M. Salapaka,et al. Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.
[48] Sheng Chen,et al. Model selection approaches for non-linear system identification: a review , 2008, Int. J. Syst. Sci..
[49] Sabri Cetinkunt,et al. Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner , 2000 .
[50] X. B. Chen,et al. Integrated PID-Based Sliding Mode State Estimation and Control for Piezoelectric Actuators , 2014, IEEE/ASME Transactions on Mechatronics.
[51] Zhouping Yin,et al. An Asymmetric Hysteresis Model and Parameter Identification Method for Piezoelectric Actuator , 2014 .
[52] Bijan Shirinzadeh,et al. Robust Neural Network Motion Tracking Control of Piezoelectric Actuation Systems for Micro/Nanomanipulation , 2009, IEEE Transactions on Neural Networks.
[53] Fouad Giri,et al. Identification of Hammerstein systems in presence of hysteresis-backlash and hysteresis-relay nonlinearities , 2008, Autom..
[54] Khai D. T. Ngo. Subcircuit modeling of magnetic cores with hysteresis in PSpice , 2002 .
[55] David J. C. MacKay,et al. Bayesian Interpolation , 1992, Neural Computation.
[56] Si-Lu Chen,et al. Development of an Approach Toward Comprehensive Identification of Hysteretic Dynamics in Piezoelectric Actuators , 2013, IEEE Transactions on Control Systems Technology.
[57] D. Croft,et al. Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .