An incremental Hammerstein-like modeling approach for the decoupled creep, vibration and hysteresis dynamics of piezoelectric actuator

The modeling of the piezoelectric actuator is very important for the fast and accurate nano-positioning control. However, the complex creep, vibration and hysteresis dynamics make the modeling very difficult. Because there are often model uncertainties in the first-principle model, the model identification from the experimental data is very necessary. Most identification approaches only consider partial dynamics of the creep, vibration and hysteresis. Though they can be combined together after they are individually identified from different experiments, it is difficult to design the completely decoupled experiment. In this study, an incremental Hammerstein-like modeling approach is proposed to identify the creep, vibration and hysteresis dynamics from one experiment. The model is called nonlinear–linear–linear-Hammerstein-like model, where one dynamic nonlinear system is used to model the hysteresis and two dynamic linear systems are used to model the creep and vibration. The creep and vibration are assumed to be decoupled, and there is a known upper bound on the order of the creep model. A two-stage incremental modeling approach is proposed to reduce the modeling complexity, where the slow dynamics of the hysteresis and creep are estimated first and then the residual of this model is used to estimate the fast dynamics of the vibration. In each stage, the model structure and order are determined by a locally regularized orthogonal least-squares-based model term selection algorithm and the parameters are estimated using a regularized least-squares method. The effectiveness of the proposed modeling approach is verified by the simulations and experiments on typical piezoelectric actuators.

[1]  Rudolf J. Seethaler,et al.  Sensorless Position Control For Piezoelectric Actuators Using A Hybrid Position Observer , 2014, IEEE/ASME Transactions on Mechatronics.

[2]  Limin Zhu,et al.  Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses , 2011 .

[3]  Qingsong Xu,et al.  Hysteresis modeling and compensation of a piezostage using least squares support vector machines , 2011 .

[4]  Sheng Chen,et al.  Local regularization assisted orthogonal least squares regression , 2006, Neurocomputing.

[5]  Danyang Wang,et al.  Optical properties of epitaxial and polycrystalline Sr[sub 1.8]Ca[sub 0.2]NaNb[sub 5]O[sub 15] thin-film waveguides grown by pulsed laser deposition , 2006 .

[6]  Aristides A. G. Requicha,et al.  Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation , 2008, IEEE Transactions on Automation Science and Engineering.

[7]  Peiyue Li,et al.  A simple fuzzy system for modelling of both rate-independent and rate-dependent hysteresis in piezoelectric actuators , 2013 .

[8]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[9]  N. Jalili,et al.  Underlying memory-dominant nature of hysteresis in piezoelectric materials , 2006 .

[10]  Fouad Giri,et al.  Parametric identification of nonlinear hysteretic systems , 2009 .

[11]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[12]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[13]  Khai D. T. Ngo,et al.  A Hammerstein-based dynamic model for hysteresis phenomenon , 1997 .

[14]  Zhao-Tong Wu,et al.  Precision control of piezoelectric actuator using support vector regression nonlinear model and neural networks , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[15]  R. Ben Mrad,et al.  A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .

[16]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[17]  Qingze Zou,et al.  Iterative control approach to compensate for the hysteresis and the vibrational dynamics effects of piezo actuators , 2006, 2006 American Control Conference.

[18]  Yuansheng Chen,et al.  A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  Georg Schitter,et al.  Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy , 2004, IEEE Transactions on Control Systems Technology.

[20]  T.-J. Yeh,et al.  Modeling and Identification of Hysteresis in Piezoelectric Actuators , 2006 .

[21]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[22]  Enrique Baeyens,et al.  Identification of block-oriented nonlinear systems using orthonormal bases , 2004 .

[23]  K. Dirscherl,et al.  Modeling the hysteresis of a scanning probe microscope , 2000 .

[24]  Yangmin Li,et al.  Dynamic compensation and H ∞ control for piezoelectric actuators based on the inverse Bouc-Wen model , 2014 .

[25]  Er-Wei Bai,et al.  Convergence of the iterative Hammerstein system identification algorithm , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[26]  Karl Johan Åström,et al.  Design and Modeling of a High-Speed AFM-Scanner , 2007, IEEE Transactions on Control Systems Technology.

[27]  Shaoyuan Li,et al.  Hammerstein Modeling with Structure Identification for Multi-input Multi-output Nonlinear Industrial Processes , 2011 .

[28]  Ju H. Park,et al.  Precise tracking control of piezoelectric actuators based on a hysteresis observer , 2012 .

[29]  Xinliang Zhang,et al.  A hybrid model for rate-dependent hysteresis in piezoelectric actuators , 2010 .

[30]  Hewon Jung,et al.  Tracking control of piezoelectric actuators , 2001 .

[31]  T. Söderström,et al.  Instrumental-variable methods for identification of Hammerstein systems , 1982 .

[32]  Chenkun Qi,et al.  A time/space separation-based Hammerstein modeling approach for nonlinear distributed parameter processes , 2009, Comput. Chem. Eng..

[33]  D. Croft,et al.  Vibration compensation for high speed scanning tunneling microscopy , 1999 .

[34]  Santosh Devasia,et al.  Hysteresis and Vibration Compensation for Piezoactuators , 1998 .

[35]  David Jiles,et al.  Theory of ferromagnetic hysteresis: determination of model parameters from experimental hysteresis loops , 1989 .

[36]  Ulrich Gabbert,et al.  Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach , 2013 .

[37]  Yuen Kuan Yong,et al.  Design, Identification, and Control of a Flexure-Based XY Stage for Fast Nanoscale Positioning , 2009, IEEE Transactions on Nanotechnology.

[38]  Yonghong Tan,et al.  Diagonal recurrent neural network with modified backlash operators for modeling of rate-dependent hysteresis in piezoelectric actuators , 2008 .

[39]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[40]  C. J. Chen,et al.  Electromechanical deflections of piezoelectric tubes with quartered electrodes , 1992 .

[41]  Zhen Zhang,et al.  A Hammerstein-based model for rate-dependent hysteresis in piezoelectric actuator , 2012, 2012 24th Chinese Control and Decision Conference (CCDC).

[42]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[43]  Wei Tech Ang,et al.  Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications , 2007, IEEE/ASME Transactions on Mechatronics.

[44]  Xiongbiao Chen,et al.  A Survey of Modeling and Control of Piezoelectric Actuators , 2013 .

[45]  Philippe Lutz,et al.  Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers , 2010, IEEE Transactions on Automation Science and Engineering.

[46]  Sheng Chen,et al.  Robust nonlinear model identification methods using forward regression , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[47]  Srinivasa M. Salapaka,et al.  Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.

[48]  Sheng Chen,et al.  Model selection approaches for non-linear system identification: a review , 2008, Int. J. Syst. Sci..

[49]  Sabri Cetinkunt,et al.  Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner , 2000 .

[50]  X. B. Chen,et al.  Integrated PID-Based Sliding Mode State Estimation and Control for Piezoelectric Actuators , 2014, IEEE/ASME Transactions on Mechatronics.

[51]  Zhouping Yin,et al.  An Asymmetric Hysteresis Model and Parameter Identification Method for Piezoelectric Actuator , 2014 .

[52]  Bijan Shirinzadeh,et al.  Robust Neural Network Motion Tracking Control of Piezoelectric Actuation Systems for Micro/Nanomanipulation , 2009, IEEE Transactions on Neural Networks.

[53]  Fouad Giri,et al.  Identification of Hammerstein systems in presence of hysteresis-backlash and hysteresis-relay nonlinearities , 2008, Autom..

[54]  Khai D. T. Ngo Subcircuit modeling of magnetic cores with hysteresis in PSpice , 2002 .

[55]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[56]  Si-Lu Chen,et al.  Development of an Approach Toward Comprehensive Identification of Hysteretic Dynamics in Piezoelectric Actuators , 2013, IEEE Transactions on Control Systems Technology.

[57]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .