H2∕H∞ Robust Static Output Feedback Control Design via Mixed Genetic Algorithm and Linear Matrix Inequalities

This paper is concerned with the synthesis of a mixed H 2 /H∞ robust static output feedback with a bounded control bandwidth for continuous-time uncertainty systems. To this end, genetic algorithms and a linear matrix inequality solver are employed to regulate the static output feedback gains and to examine the Lyapunov stability conditions, respectively. The fitness function of this paper, which is called a hierarchical fitness function structure (HFFS), is able to deal with the stability conditions and the performance constraints in turn. This HFFS not only saves computing time but can also identify the infeasible stability condition. Designers can use the proposed idea to deal with many complex output feedback control problems. It also limits elaborate mathematical derivations and extra constraints.

[1]  B. V. Sheela An optimized step-size random search (OSSRS) , 1979 .

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  Alan J. Laub,et al.  The LMI control toolbox , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[4]  J. Geromel,et al.  Convex analysis of output feedback control problems: robust stability and performance , 1996, IEEE Trans. Autom. Control..

[5]  Kim Fung Man,et al.  Genetic algorithms for control and signal processing , 1997, Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066).

[6]  Chaouki T. Abdallah,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[7]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[8]  Sophie Tarbouriech,et al.  LMI approximations for the radius of the intersection of ellipsoids , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[9]  José Claudio Geromel,et al.  H2-norm optimization with constrained dynamic output feedback controllers: decentralized and reliable control , 1999, IEEE Trans. Autom. Control..

[10]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[11]  Sophie Tarbouriech,et al.  Output feedback robust stabilization of uncertain linear systems with saturating controls: an LMI approach , 1999, IEEE Trans. Autom. Control..

[12]  Friedemann Leibfritz,et al.  An LMI-Based Algorithm for Designing Suboptimal Static H2/Hinfinity Output Feedback Controllers , 2000, SIAM J. Control. Optim..

[13]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[14]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[15]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[16]  Sophie Tarbouriech,et al.  LMI Approximations for the Radius of the Intersection of Ellipsoids: Survey , 2001 .

[17]  Y. Boers Average performance control by static output feedback , 2002 .

[18]  Takao Watanabe,et al.  A unified algebraic approach to linear control design: Robert E. Skelton, Tetsuya Iwasaki and Karolos M. Grigoriadis; Copyright Taylor & Francis, 1998, ISBN: 0-7484-0592-5 , 2003, Autom..

[19]  D. R. Lewin,et al.  A constrained genetic algorithm for decentralized control system structure selection and optimization , 2003, Autom..