Chromatic numbers of the strong product of odd cycles
暂无分享,去创建一个
[1] D. J. A. Welsh,et al. A randomised 3-colouring algorithm , 1989, Discret. Math..
[2] Aleksander Vesel. The independence number of the strong product of cycles , 1998 .
[3] W. Imrich,et al. Product Graphs: Structure and Recognition , 2000 .
[4] Claude E. Shannon,et al. The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.
[5] Joan Feigenbaum,et al. Finding the prime factors of strong direct product graphs in polynomial time , 1992, Discret. Math..
[6] Sandi Klavzar,et al. Coloring graph products - A survey , 1996, Discret. Math..
[7] Pranava K. Jha. Smallest independent dominating sets in Kronecker products of cycles , 2001, Discret. Appl. Math..
[8] Jaroslav Nesetril,et al. On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.
[9] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[10] Katalin Vesztergombi. Some remarks on the chromatic number of the strong product of graphs , 1979, Acta Cybern..
[11] Janez Zerovnik. A randomized algorithm for k-colorability , 1994, Discret. Math..