Satellite Constellation Design Tradeoffs Using Multiple-Objective Evolutionary Computation

Multiple-objective evolutionary computation provides the satellite constellation designer with an essential optimization tool due to the discontinuous, temporal, and/or nonlinear characteristics of the metrics that architectures are evaluated against. In this work, the nondominated sorting genetic algorithm 2 (NSGA-2) is used to generate sets of constellation designs (Pareto fronts) that show the tradeoff for two pairs of conflicting metrics. The first pair replicates a previously published sparse-coverage tradeoff to establish a baseline for tool development, whereas the second characterizes the conflict between temporal (revisit time) and spatial (image quality) resolution. A thorough parameter analysis is performed on the NSGA-2 for the constellation design problem so that the utility of the approach may be assessed and general guidelines for use established. The approximated Pareto fronts generated for each tradeoff are discussed, and the trends exhibited by the nondominated designs are revealed. Nomenclature a = semimajor axis, km e = eccentricity F = focal length, m i = inclination, deg K = units conversion constant M = mean anomaly, deg P = pixel size, μm e = elevation, deg ρ = range, km � = right ascension of the ascending node, deg ω = argument of perigee, deg

[1]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[2]  R. Fiete Image quality and λFN/p for remote sensing systems , 1999 .

[3]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[4]  Rahim Tafazolli,et al.  Non-GEO Satellite Constellation Design with Satellite Diversity Using Genetic Algorithm , 2002 .

[5]  Vilfredo Pareto,et al.  Manuale di economia politica , 1965 .

[6]  J. Campbell Introduction to remote sensing , 1987 .

[7]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[8]  Giuseppe Confessore,et al.  A Genetic Algorithm to Design Satellite Constellations for Regional Coverage , 2001 .

[9]  William A. Crossley,et al.  SIMULATED ANNEALING AND GENETIC ALGORITHM APPROACHES FOR DISCONTINUOUS COVERAGE SATELLITE CONSTELLATION DESIGN , 2000 .

[10]  J. Walker Some circular orbit patterns providing continuous whole earth coverage. , 1970 .

[11]  J. W. Hartmann,et al.  Optimal earth orbiting satellite constellations via a pareto genetic algorithm , 1998 .

[12]  James R. Wertz,et al.  Mission geometry; orbit and constellation design and management , 2001 .

[13]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[14]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[15]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[16]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[17]  Rahim Tafazolli,et al.  Genetic Hybrid Satellite Constellation Design , 2003 .

[18]  Edwin A. Williams,et al.  Average and maximum revisit time trade studies for satellite constellations using a multiobjective Genetic Algorithm , 2001 .

[19]  Matthew P. Ferringer,et al.  Efficient and Accurate Evolutionary Multi-Objective Optimization Paradigms for Satellite Constellation Design , 2007 .

[20]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[21]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[22]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .