Bounds on the (Laplacian) spectral radius of graphs

The spectral radius of a graph is the largest eigenvalue of adjacency matrix of the graph and its Laplacian spectral radius is the largest eigenvalue of the Laplacian matrix which is the difference of the diagonal matrix of vertex degrees and the adjacency matrix. Some sharp bounds are obtained for the (Laplacian) spectral radii of connected graphs. As consequences, some (sharp) upper bounds of the Nordhaus–Gaddum type are also obtained for the sum of (Laplacian) spectral radii of a connected graph and its connected complement.

[1]  Vladimir Nikiforov Walks and the spectral radius of graphs , 2005 .

[2]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[3]  Mark N. Ellingham,et al.  The Spectral Radius of Graphs on Surfaces , 2000, J. Comb. Theory, Ser. B.

[4]  Rong Luo,et al.  The spectral radius of triangle-free graphs , 2002, Australas. J Comb..

[5]  Eva Nosal,et al.  Eigenvalues of graphs , 1970 .

[6]  Xiaodong Zhang Eigenvectors and eigenvalues of non-regular graphs , 2005 .

[7]  Dragan Stevanovic,et al.  The largest eigenvalue of nonregular graphs , 2004, J. Comb. Theory, Ser. B.

[8]  Ivan Gutman,et al.  THE PATH IS THE TREE WITH SMALLEST GREATEST LAPLACIAN EIGENVALUE , 2002 .

[9]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[10]  F. Tian,et al.  On the spectral radius of graphs , 2004 .

[11]  Dasong Cao,et al.  Bounds on eigenvalues and chromatic numbers , 1998 .

[12]  F. Tian,et al.  Bounds of Laplacian spectrum of graphs based on the domination number , 2005 .

[13]  Yong-Liang Pan,et al.  de Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph , 2001 .

[14]  Huiqing Liu,et al.  On the Laplacian spectral radius of a graph , 2004 .

[15]  Frank Harary,et al.  Graph Theory , 2016 .

[16]  Yuan Hong,et al.  A Sharp Upper Bound of the Spectral Radius of Graphs , 2001, J. Comb. Theory, Ser. B.

[17]  Odile Favaron,et al.  Some eigenvalue properties in graphs (conjectures of Graffiti - II) , 1993, Discret. Math..

[18]  Kinkar Chandra Das,et al.  Some new bounds on the spectral radius of graphs , 2004, Discret. Math..

[19]  E. A. Nordhaus,et al.  On Complementary Graphs , 1956 .

[20]  Xinmao Wang,et al.  On the largest eigenvalue of non-regular graphs , 2007, J. Comb. Theory, Ser. B.

[21]  Xiao-Dong Zhang,et al.  Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees , 2005, Discret. Math..