Bacillus thuringiensis insecticides in crop protection — reality and prospects

Bacillus thuringiensis (Bt) has been the leading biopesticide against lepidopterous pests since 1959. In the 1990 s the following developments contributed to increased rational uses of Bt: (1) natural and recombinant Bt products were developed to broaden the insect host range in pest management programs; (2) new formulations based on conventional or genetically engineered encapsulation of the toxins and/or feeding stimulants to increase ingestion and, in turn, the efficacy of the microbe; (3) screening of the interactions of Bt with insect herbivores and plant allelochemicals or natural enemies of the pests, to aid the formulation of biological control strategies; and (4) knowledge and management of insect resistance to Bt. The prospects for Bt insecticides will be described and discussed.

[1]  J. Bryant Application strategies for Bacillus thuringiensis , 1994 .

[2]  D. Dean,et al.  Synergism between CryIA insecticidal crystal proteins and spores of Bacillus thuringiensis, other bacterial spores, and vegetative cells against Lymantria dispar (Lepidoptera: Lymantriidae) larvae , 1995 .

[3]  H. Dulmage Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. , 1970 .

[4]  D. Landis,et al.  Feeding behavior and growth of Heliothis virescens larvae on diets containing Bacillus thuringiensis formulations or endotoxins , 1991 .

[5]  A. Navon,et al.  Bioassays of entomopathogenic microbes and nematodes. , 2000 .

[6]  M. Bentley,et al.  Interactive effects of an antifeedant used with Bacillus thuringiensis var. san diego delta endotoxin on Colorado potato beetle (Coleoptera : Chrysomelidae) , 1993 .

[7]  D. Ferro,et al.  Colorado Potato Beetle (Coleoptera: Chrysomelidae) Larval Mortality: Operative Effects of Bacillus thuringiensis subsp. san diego , 1991 .

[8]  B. Shasha,et al.  Response of Starch-Encapsulated Bacillus thuringiensis Containing Ultraviolet Screens to Sunlight , 1989 .

[9]  M. Mcguire,et al.  Starch Encapsulation of Microbial Pesticides , 1995 .

[10]  B. Tabashnik,et al.  Suppression of diamondback moth (Lepidoptera: Plutellidae) with an entomopathogenic nematode (Rhabditida: Steinernematidae) and Bacillus thuringiensis Berliner. , 1998, Journal of economic entomology.

[11]  B. Tabashnik,et al.  Field Development of Resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae) , 1990 .

[12]  J. Wyman,et al.  A Mutant ofBacillus thuringiensisProducing a Dark-Brown Pigment with Increased UV Resistance and Insecticidal Activity , 1996 .

[13]  H. D. Burges Microbial control of pests and plant diseases 1970-1980 , 1981 .

[14]  E. Cohen,et al.  Photoprotection of Bacillus thuringiensis kurstaki from ultraviolet irradiation. , 1991, Journal of invertebrate pathology.

[15]  J. Fuxa Fate of Released Entomopathogens with Reference to Risk Assessment of Genetically Engineered Microorganisms , 1989 .

[16]  G. Zehnder,et al.  Timing of the Initial Spray Application of Bacillus thuringiensis for Control of the Colorado Potato Beetle (Coleoptera: Chrysomelidae) in Potatoes , 1993 .

[17]  J. Samples,et al.  Ocular infection caused by a biological insecticide. , 1983, The Journal of infectious diseases.

[18]  A. Navon,et al.  Bacillus thuringiensis potency bioassays against Heliothis armigera, Earias insulana, and Spodoptera littoralis larvae based on standardized diets. , 1990, Journal of invertebrate pathology.

[19]  H. D. Burges,et al.  Formulation of Microbial Biopesticides , 1998, Springer Netherlands.

[20]  J. W. Barry,et al.  Biorational Pest Control Agents: Formulation and Delivery , 1995 .

[21]  C. Herrnstadt,et al.  A New Strain of Bacillus thuringiensis with Activity Against Coleopteran Insects , 1986, Bio/Technology.

[22]  J. Farkaš,et al.  Thuringiensin, the beta-exotoxin of Bacillus thuringiensis , 1981 .

[23]  J. Trumble,et al.  Comparative Toxicity of Spores and Crystals from the NRD-12 and HD-1 Strains of Bacillus thuringiensis suhsp. kurstaki to Neonate Beet Armyworm (Lepidoptera: Noctuidae) , 1989 .

[24]  A. Navon,et al.  Interactions Among Helicoverpa armigera (Lepidoptera: Noctuidae), Its Larval Endoparasitoid Microplitis croceipes (Hymenoptera: Braconidae), and Bacillus thuringiensis , 1997 .

[25]  J. Trumble,et al.  Development and economic evaluation of an IPM program for fresh market tomato production in Mexico , 1993 .

[26]  S. Y. Young,et al.  Development of Cotesia marginiventris (Hymenoptera: Braconidae) in Tobacco Budworm (Lepidoptera: Noctuidae) Larvae Treated with Bacillus thuringiensis and Thiodicarb , 1997 .

[27]  J. Charles,et al.  Entomopathogenic Bacteria: from Laboratory to Field Application , 2000, Springer Netherlands.

[28]  J. F. Walter commercial Experience with Neem Products , 1999 .

[29]  R. Cannon BACILLUS THURINGIENSIS USE IN AGRICULTURE: A MOLECULAR PERSPECTIVE , 1996 .

[30]  K. Frankenhuyzen Application of Bacillus thuringiensis in forestry , 2000 .

[31]  C. Cloutier,et al.  Synergism Between Natural Enemies and Biopesticides: a Test Case Using the Stinkbug Perillus bioculatus (Hemiptera: Pentatomidae) and Bacillus thuringiensis tenebrionis Against Colorado Potato Beetle (Coleoptera: Chrysomelidae) , 1998 .

[32]  N. McLaughlin,et al.  Interaction of Caffeine and Related Compounds with Bacillus Thuringiensis ssp.kurstaki in Bertha Armyworm (Lepidoptera: Noctuidae) , 1994 .

[33]  D. Ferro,et al.  Residual Activity of Insecticides Under Field Conditions for Controlling the Colorado Potato Beetle (Coleoptera: Chrysomelidae) , 1993 .

[34]  H. D. Burges,et al.  Formulation of Bacteria, Viruses and Protozoa to Control Insects , 1998 .

[35]  J. T. Mcclintock,et al.  A comparative review of the mammalian toxicity of Bacillus thuringiensis-based pesticides , 1995 .