HP -VERSION DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC PROBLEMS

We consider the $hp$-version discontinuous Galerkin finite element method ($hp$-DGFEM) with interior penalty for semilinear parabolic equations with locally Lipschitz continuous nonlinearity, subject to mixed nonhomogeneous Dirichlet-nonhomogeneous Neumann boundary conditions. Our main concern is the error analysis of the (spatially) semidiscrete $hp$-DGFEM on shape-regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and nonsymmetric versions of DGFEM.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Endre Süli,et al.  Poincaré-type inequalities for broken Sobolev spaces , 2003 .

[3]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[4]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[5]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[6]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[7]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[8]  Richard S. Falk,et al.  Local error estimates for a finite element method for hyperbolic and convection-diffusion equations , 1992 .

[9]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[10]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[11]  Ralf Hartmann,et al.  Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..

[12]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[13]  Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptical Problems Part I. Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptic Problems , 1999 .

[14]  Mark Ainsworth,et al.  Approximation theory for the hp -version finite element method and application to the non-linear Laplacian , 2000 .

[15]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[16]  G. Richter An Optimal-Order Error Estimate for the Discontinuous Galerkin Method , 1988 .

[17]  Charalambos Makridakis,et al.  A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..

[18]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[21]  Mark Ainsworth,et al.  The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs , 1999, Numerische Mathematik.

[22]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[23]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[24]  B. Rivière,et al.  A Discontinuous Galerkin Method Applied to Nonlinear Parabolic Equations , 2000 .

[25]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[26]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[27]  B. Rivière,et al.  Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .

[28]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[29]  Bernardo Cockburn,et al.  A Priori Error Estimates for Nonlinear Scalar Conservation Laws , 1999 .

[30]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[31]  Gerard R. Richter,et al.  The discontinuous Galerkin method with diffusion , 1992 .

[32]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[33]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[34]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[35]  Ivo Babuška,et al.  The optimal convergence rate of the p-version of the finite element method , 1987 .

[36]  Jens Markus Melenk,et al.  HP-INTERPOLATION OF NON-SMOOTH FUNCTIONS , 2003 .

[37]  Bernardo Cockburn,et al.  Devising discontinuous Galerkin methods for non-linear hyperbolic conversation laws , 2001 .

[38]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .