Nonparametric estimation of current status data with dependent censoring

This paper discusses nonparametric estimation of a survival function when one observes only current status data (McKeown and Jewell, Lifetime Data Anal 16:215–230, 2010; Sun, The statistical analysis of interval-censored failure time data, 2006; Sun and Sun, Can J Stat 33:85–96, 2005). In this case, each subject is observed only once and the failure time of interest is observed to be either smaller or larger than the observation or censoring time. If the failure time and the observation time can be assumed to be independent, several methods have been developed for the problem. Here we will focus on the situation where the independent assumption does not hold and propose two simple estimation procedures under the copula model framework. The proposed estimates allow one to perform sensitivity analysis or identify the shape of a survival function among other uses. A simulation study performed indicates that the two methods work well and they are applied to a motivating example from a tumorigenicity study.

[1]  Nicholas P. Jewell,et al.  Misclassification of current status data , 2010, Lifetime data analysis.

[2]  Laurence L. George,et al.  The Statistical Analysis of Failure Time Data , 2003, Technometrics.

[3]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical , 2002 .

[4]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[5]  Zhigang Zhang,et al.  Statistical analysis of current status data with informative observation times , 2005, Statistics in medicine.

[6]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[7]  J. Lawless,et al.  Estimation from truncated lifetime data with supplementary information on covariates and censoring times , 1996 .

[8]  Jianguo Sun,et al.  The Statistical Analysis of Interval-censored Failure Time Data , 2006 .

[9]  Linxiong Li,et al.  Rank Estimation of Log-Linear Regression with Interval-Censored Data , 2003, Lifetime data analysis.

[10]  Linxiong Li,et al.  Regression models with arbitrarily interval-censored observations , 1999 .

[11]  D G Hoel,et al.  Statistical analysis of survival experiments. , 1972, Journal of the National Cancer Institute.

[12]  John P. Klein,et al.  Estimates of marginal survival for dependent competing risks based on an assumed copula , 1995 .

[13]  Niels Keiding,et al.  Age‐Specific Incidence and Prevalence: A Statistical Perspective , 1991 .

[14]  Jianguo Sun,et al.  Interval Censoring , 2003 .

[15]  Jianguo Sun,et al.  Semiparametric linear transformation models for current status data , 2005 .

[16]  R. Nelsen An Introduction to Copulas , 1998 .

[17]  Jianguo Sun,et al.  NONPARAMETRIC SURVIVAL COMPARISONS FOR INTERVAL-CENSORED CONTINUOUS DATA , 2002 .

[18]  Rupert G. Miller,et al.  Survival Analysis , 2022, The SAGE Encyclopedia of Research Design.

[19]  Jerald F. Lawless,et al.  Nonparametric estimation of a lifetime distribution when censoring times are missing , 1998 .

[20]  T. Louis,et al.  Use of Tumour Lethality to Interpret Tumorigenicity Experiments Lacking Cause‐Of‐Death Data , 1988 .

[21]  P. Hougaard A class of multivanate failure time distributions , 1986 .