Scale-up of Co–Ni cathodes produced from spent Ni–Cd batteries for hydrogen production in an oxy-hydrogen gas cell

[1]  Abdoulaye Djire,et al.  Review and analysis of the hydrogen production technologies from a safety perspective , 2022, International Journal of Hydrogen Energy.

[2]  J. Vazquez-Arenas,et al.  Co-Ni alloy coatings electrodeposited using real leachates generated from positive electrodes of Ni Cd batteries , 2021, Surface and Coatings Technology.

[3]  M. Farsari,et al.  Enhanced hydrogen production through alkaline electrolysis using laser-nanostructured nickel electrodes , 2021, International Journal of Hydrogen Energy.

[4]  Abdoulaye Djire,et al.  Recent development in electrocatalysts for hydrogen production through water electrolysis , 2021 .

[5]  E. Toklu,et al.  A new analysis of two phase flow on hydrogen production from water electrolysis , 2021 .

[6]  S. Hosseini,et al.  Experimental study, energy assessment and improvement of hydroxy generator coupled with a gasoline engine , 2020 .

[7]  C. Clemente-Jul,et al.  Aspen Plus model of an alkaline electrolysis system for hydrogen production , 2020 .

[8]  A. Lasia Mechanism and kinetics of the hydrogen evolution reaction , 2019, International Journal of Hydrogen Energy.

[9]  A. Popoola,et al.  Hydrogen energy, economy and storage: Review and recommendation , 2019, International Journal of Hydrogen Energy.

[10]  B. Li,et al.  Low temperature CO oxidation catalysed by flower-like Ni–Co–O: how physicochemical properties influence catalytic performance , 2018, RSC advances.

[11]  Hartmut Spliethoff,et al.  Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review , 2018 .

[12]  Youwei Du,et al.  An efficient Co3S4/CoP hybrid catalyst for electrocatalytic hydrogen evolution , 2017, Scientific Reports.

[13]  R. Misra,et al.  Nanoscale spheroidized cementite induced ultrahigh strength-ductility combination in innovatively processed ultrafine-grained low alloy medium-carbon steel , 2017, Scientific Reports.

[14]  P. Muthukrishnan,et al.  Adsorption and corrosion inhibiting behavior of Lannea coromandelica leaf extract on mild steel corrosion , 2017 .

[15]  J. Vazquez-Arenas,et al.  The Influence of Ni(II) and Co(II) Adsorptions in the Anomalous Behavior of Co‐Ni Alloys: Density Functional Theory and Experimental Studies , 2017 .

[16]  W. Xiao,et al.  Twin structure of the lath martensite in low carbon steel , 2016 .

[17]  Qingyu Li,et al.  The effect of graphene for the hydrogen evolution reaction in alkaline medium , 2016 .

[18]  Panta Pc,et al.  Raman Spectroscopy of Iron Oxide of Nanoparticles (Fe3O4) , 2015 .

[19]  V. Hacker,et al.  H2 generation from alkaline electrolyzer , 2015 .

[20]  Youwei Du,et al.  Porous Three-Dimensional Flower-like Co/CoO and Its Excellent Electromagnetic Absorption Properties. , 2015, ACS applied materials & interfaces.

[21]  M. Pritzker,et al.  Effects of saccharin and anions (SO42−, Cl−) on the electrodeposition of Co–Ni alloys , 2015, Journal of Solid State Electrochemistry.

[22]  N. Xu,et al.  Characterization of the porous Ni3Al–Mo electrodes during hydrogen generation from alkaline water electrolysis , 2013 .

[23]  Y. Kiros,et al.  Stable and inexpensive electrodes for the hydrogen evolution reaction , 2013 .

[24]  V. Pérez-Herranz,et al.  Synthesis and characterization of macroporous Ni, Co and Ni–Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media , 2013 .

[25]  S. Baranton,et al.  Nickel cobalt hydroxide nanoflakes as catalysts for the hydrogen evolution reaction , 2013 .

[26]  E. Arce-Estrada,et al.  Electrochemical behavior of NixW1−x materials as catalyst for hydrogen evolution reaction in alkaline media , 2012 .

[27]  V. Jović,et al.  Determination of kinetic parameters for the hydrogen evolution reaction on the electrodeposited Ni–MoO2 composite coating in alkaline solution , 2012 .

[28]  Lin Zhuang,et al.  First implementation of alkaline polymer electrolyte water electrolysis working only with pure water , 2012 .

[29]  M. Pritzker,et al.  Co–Ni alloy electrodeposition under different conditions of pH, current and composition , 2012 .

[30]  M. Pritzker,et al.  Formation of Co–Ni alloy coatings under direct current, pulse current and pulse-reverse plating conditions , 2012 .

[31]  N. Xu,et al.  Electrochemical performance of porous Ni3Al electrodes for hydrogen evolution reaction , 2011 .

[32]  Zhaojun Li,et al.  The enhanced electrocatalytic activity and stability of NiW films electrodeposited under super gravi , 2011 .

[33]  H. Meng,et al.  Effect of carbon content on Ni–Fe–C electrodes for hydrogen evolution reaction in seawater , 2010 .

[34]  A. Madram,et al.  Electrocatalytic activities of nanocomposite Ni81P16C3 electrode for hydrogen evolution reaction in alkaline solution by electrochemical impedance spectroscopy , 2008 .

[35]  J. Vazquez-Arenas,et al.  The Effect of the Cu2 + ∕ Cu + Step on Copper Electrocrystallization in Acid Noncomplexing Electrolytes , 2007 .

[36]  Q. Han,et al.  A study on the electrodeposited Ni–S alloys as hydrogen evolution reaction cathodes , 2003 .

[37]  J. Richardson X-ray diffraction study of nickel oxide reduction by hydrogen , 2003 .

[38]  N. Munichandraiah,et al.  Kinetics of hydrogen evolution on submicron size Co, Ni, Pd and Co–Ni alloy powder electrodes by d.c. polarization and a.c. impedance studies , 2002 .

[39]  N. Krstajić,et al.  On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution. Part I. The mechanism , 2001 .

[40]  S. Machado,et al.  STUDIES OF THE HYDROGEN EVOLUTION REACTION ON SMOOTH CO AND ELECTRODEPOSITED NI-CO ULTRAMICROELECTRODES , 1999 .

[41]  R. Leysen,et al.  Hydrogen evolution at nickel sulphide cathodes in alkaline medium , 1984 .

[42]  W. Vielstich J. O'M. Bockris, B. E. Conway, E. Yeager, R. E. White (Eds.): Electrochemical Processing, Vol. 2 aus: Comprehensive Treatise of Electrochemistry, Plenum Press, New York, London 1981. 616 Seiten, Preis: $ 57.50. , 1982 .

[43]  S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions , 1972 .

[44]  J. Vazquez-Arenas,et al.  3.6 Surface Texture Properties of Co–Ni Alloys Formed with Unipolar and Bipolar Plating , 2017 .

[45]  N. Miyamoto,et al.  A Facile Synthesis of Cd(OH)2‐rGO Nanocomposites for the Practical Electrochemical Detection of Acetaminophen , 2017 .

[46]  M. Vázquez,et al.  Electrochemical synthesis of magnetic nanowires with controlled geometry and magnetic anisotropy , 2015 .

[47]  T. V. Gaevskaya,et al.  Electrodeposited Ni–Co–B Alloy Coatings: Preparation and Properties , 2014 .

[48]  J. Kurawaki,et al.  Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity , 2013 .

[49]  V. Pérez-Herranz,et al.  Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits , 2011 .

[50]  M. Pritzker,et al.  Experimental and Modeling Study of Nickel Electrodeposition Including H + and Water Reduction and Homogeneous Reactions , 2011 .

[51]  Jürgen Garche,et al.  Encyclopedia of electrochemical power sources , 2009 .

[52]  Zhongqiang Shan,et al.  Amorphous Ni–S–Mn alloy as hydrogen evolution reaction cathode in alkaline medium , 2008 .