Bound of entanglement of assistance and monogamy constraints

We investigate the entanglement of assistance which quantifies capabilities of producing pure bipartite entangled states from a pure tripartite state. The lower bound and upper bound of entanglement of assistance are obtained. In the light of the upper bound, monogamy constraints are proved for arbitrary n-qubit states.

[1]  Jeong San Kim,et al.  Polygamy of distributed entanglement , 2009, 0903.4413.

[2]  Zong-Guo Li,et al.  Evolution equation of entanglement for bipartite systems , 2008, 0806.4228.

[3]  L. Aolita,et al.  Scalable method to estimate experimentally the entanglement of multipartite systems , 2008 .

[4]  Shao-Ming Fei,et al.  Proper monogamy inequality for arbitrary pure quantum states , 2008 .

[5]  J. I. D. Vicente Further results on entanglement detection and quantification from the correlation matrix criterion , 2007, 0705.2583.

[6]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[7]  Barry C. Sanders,et al.  Dual monogamy inequality for entanglement , 2007 .

[8]  S. Fei,et al.  Entanglement conditions for multimode states , 2007, quant-ph/0701069.

[9]  S. Fei,et al.  Lower bounds of concurrence for tripartite quantum systems , 2006, quant-ph/0611158.

[10]  G. Gour Entanglement of collaboration , 2006, quant-ph/0610132.

[11]  R. Spekkens,et al.  Entanglement of assistance is not a bipartite measure nor a tripartite monotone , 2005, quant-ph/0512139.

[12]  F. Verstraete,et al.  General monogamy inequality for bipartite qubit entanglement. , 2005, Physical review letters.

[13]  G. Gour Mixed-state entanglement of assistance and the generalized concurrence (7 pages) , 2005, quant-ph/0506229.

[14]  S. Fei,et al.  Concurrence of arbitrary dimensional bipartite quantum states. , 2005, Physical review letters.

[15]  D. Meyer,et al.  Deterministic entanglement of assistance and monogamy constraints , 2005, quant-ph/0505091.

[16]  A. Buchleitner,et al.  Concurrence of mixed multipartite quantum States. , 2004, Physical review letters.

[17]  T. Osborne Entanglement measure for rank-2 mixed states , 2002, quant-ph/0203087.

[18]  F. Verstraete,et al.  Localizable Entanglement , 2004, quant-ph/0411123.

[19]  A. Buchleitner,et al.  Concurrence of mixed bipartite quantum states in arbitrary dimensions. , 2004, Physical review letters.

[20]  F. Verstraete,et al.  Entanglement versus correlations in spin systems. , 2003, Physical review letters.

[21]  F. Verstraete,et al.  Local vs. joint measurements for the entanglement of assistance , 2002, Quantum Inf. Comput..

[22]  G. J. Milburn,et al.  Institute for Mathematical Physics Universal State Inversion and Concurrence in Arbitrary Dimensions Universal State Inversion and Concurrence in Arbitrary Dimensions , 2022 .

[23]  B. Moor,et al.  Local filtering operations on two qubits , 2000, quant-ph/0011111.

[24]  B. Moor,et al.  Variational characterizations of separability and entanglement of formation , 2000, quant-ph/0006128.

[25]  Charles H. Bennett,et al.  Quantum information and computation , 1995, Nature.

[26]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[27]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[28]  O. Cohen,et al.  Unlocking Hidden Entanglement with Classical Information , 1998 .

[29]  Ashish V. Thapliyal,et al.  Entanglement of Assistance , 1998, QCQC.

[30]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[31]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .