Direct transfer trajectory design options for interplanetary orbiter missions using an iterative patched conic method

Abstract In a direct interplanetary transfer, the spacecraft moves from a parking orbit of the departure planet to a parking orbit of the arrival planet. The transfer trajectory must be designed such that the specified arrival parking orbit conditions are achieved. For a fixed departure epoch and flight duration, there are four distinct transfer trajectory design options in a direct transfer. The conventional patched conic method, the most widely used analytical trajectory design method, does not identify these design options. An iterative patched conic method that identifies these distinct design options is developed and presented in this paper. This method involves two iterative processes: (i) iteration on the hyperbolic orbit characteristics using an analytical tuning strategy to achieve the hyperbolic excess velocity vector at the patch point, (ii) iteration on the patch points at the sphere of influence. The performance of the proposed method is compared with the conventional and V-infinity tuned patched conic methods. A design analysis tool, based on the proposed method, is developed and tested in various orbiter mission scenarios.