Band Selection for Nonlinear Unmixing of Hyperspectral Images as a Maximal Clique Problem

Kernel-based nonlinear mixing models have been applied to unmix spectral information of hyperspectral images when the type of mixing occurring in the scene is too complex or unknown. Such methods, however, usually require the inversion of matrices of sizes equal to the number of spectral bands. Reducing the computational load of these methods remains a challenge in large-scale applications. This paper proposes a centralized band selection (BS) method for supervised unmixing in the reproducing kernel Hilbert space. It is based upon the coherence criterion, which sets the largest value allowed for correlations between the basis kernel functions characterizing the selected bands in the unmixing model. We show that the proposed BS approach is equivalent to solving a maximum clique problem, i.e., searching for the biggest complete subgraph in a graph. Furthermore, we devise a strategy for selecting the coherence threshold and the Gaussian kernel bandwidth using coherence bounds for linearly independent bases. Simulation results illustrate the efficiency of the proposed method.

[1]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[2]  John F. Mustard,et al.  Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra , 1989 .

[3]  Licheng Jiao,et al.  Hyperspectral Band Selection Based on Trivariate Mutual Information and Clonal Selection , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Aristidis Likas,et al.  The Global Kernel $k$-Means Algorithm for Clustering in Feature Space , 2009, IEEE Transactions on Neural Networks.

[5]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[6]  Qian Du,et al.  Similarity-Based Unsupervised Band Selection for Hyperspectral Image Analysis , 2008, IEEE Geoscience and Remote Sensing Letters.

[7]  Qinghua Wu,et al.  A review on algorithms for maximum clique problems , 2015, Eur. J. Oper. Res..

[8]  J. Karhunen,et al.  Advances in Nonlinear Blind Source Separation , 2003 .

[9]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[10]  Cédric Richard,et al.  Band Selection for Nonlinear Unmixing of Hyperspectral Images as a Maximal Click Problem , 2022 .

[11]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[12]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[13]  Feifei Xu,et al.  Unsupervised Hyperspectral Band Selection by Dominant Set Extraction , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[15]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[16]  M. Davy,et al.  General Framework for Nonlinear Functional Regression with Reproducing Kernel Hilbert Spaces , 2009 .

[17]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[18]  John F. Mustard,et al.  Quantitative Abundance Estimates From Bidirectional Reflectance Measurements , 1987 .

[19]  Benoit Rivard,et al.  A method to compute the n-dimensional solid spectral angle between vectors and its use for band selection in hyperspectral data , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[20]  Paul D. Gader,et al.  A Review of Nonlinear Hyperspectral Unmixing Methods , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[21]  Nicolas H. Younan,et al.  Hyperspectral Pixel Unmixing via Spectral Band Selection and DC-Insensitive Singular Value Decomposition , 2007, IEEE Geoscience and Remote Sensing Letters.

[22]  Cédric Richard,et al.  Band selection in RKHS for fast nonlinear unmixing of hyperspectral images , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[23]  Cédric Richard,et al.  Nonlinear Unmixing of Hyperspectral Data With Vector-Valued Kernel Functions , 2017, IEEE Transactions on Image Processing.

[24]  Chein-I Chang,et al.  Hyperspectral Data Processing: Algorithm Design and Analysis , 2013 .

[25]  S. Gerstl,et al.  Nonlinear spectral mixing models for vegetative and soil surfaces , 1994 .

[26]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[27]  Qi Wang,et al.  Salient Band Selection for Hyperspectral Image Classification via Manifold Ranking , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[28]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[29]  Rob Heylen,et al.  A Distance Geometric Framework for Nonlinear Hyperspectral Unmixing , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[30]  Jean-Yves Tourneret,et al.  Nonlinearity Detection in Hyperspectral Images Using a Polynomial Post-Nonlinear Mixing Model , 2013, IEEE Transactions on Image Processing.

[31]  Jean-Yves Tourneret,et al.  Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery , 2012, IEEE Transactions on Image Processing.

[32]  Xiaorun Li,et al.  Blind nonlinear hyperspectral unmixing based on constrained kernel nonnegative matrix factorization , 2012, Signal, Image and Video Processing.

[33]  Paul D. Gader,et al.  Hyperspectral Band Selection and Endmember Detection Using Sparsity Promoting Priors , 2008, IEEE Geoscience and Remote Sensing Letters.

[34]  John R. Miller,et al.  Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated‐forest hyperspectral data , 2009 .

[35]  Amit Banerjee,et al.  A comparison of kernel functions for intimate mixture models , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[36]  Chu Min Li,et al.  An efficient branch-and-bound algorithm based on MaxSAT for the maximum clique problem , 2010, AAAI 2010.

[37]  Liangpei Zhang,et al.  Abundance estimation from hyperspectral image based on probabilistic outputs of multi-class support vector machines , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[38]  T. W. Ray,et al.  Nonlinear Spectral Mixing in Desert Vegetation , 1996 .

[39]  Jie Chen,et al.  Nonlinear Estimation of Material Abundances in Hyperspectral Images With $\ell_{1}$-Norm Spatial Regularization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[41]  Alfred O. Hero,et al.  Nonlinear Unmixing of Hyperspectral Images: Models and Algorithms , 2013, IEEE Signal Processing Magazine.

[42]  Paul Honeine,et al.  Online Prediction of Time Series Data With Kernels , 2009, IEEE Transactions on Signal Processing.

[43]  Chein-I Chang,et al.  Progressive Band Selection of Spectral Unmixing for Hyperspectral Imagery , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Kang Sun,et al.  Exemplar Component Analysis: A Fast Band Selection Method for Hyperspectral Imagery , 2015, IEEE Geoscience and Remote Sensing Letters.

[45]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Jean-Yves Tourneret,et al.  Nonlinear Spectral Unmixing of Hyperspectral Images Using Gaussian Processes , 2012, IEEE Transactions on Signal Processing.

[47]  Adolfo Martínez Usó,et al.  Clustering-Based Hyperspectral Band Selection Using Information Measures , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Hua Jiang,et al.  Combining MaxSAT Reasoning and Incremental Upper Bound for the Maximum Clique Problem , 2013, 2013 IEEE 25th International Conference on Tools with Artificial Intelligence.

[49]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[50]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[51]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[52]  J. Chanussot,et al.  Hyperspectral Remote Sensing Data Analysis and Future Challenges , 2013, IEEE Geoscience and Remote Sensing Magazine.

[53]  Edward B. Van Vleck Current tendencies of mathematical research , 1916 .

[54]  Torsten Fahle,et al.  Simple and Fast: Improving a Branch-And-Bound Algorithm for Maximum Clique , 2002, ESA.

[55]  Rob Heylen,et al.  Non-Linear Spectral Unmixing by Geodesic Simplex Volume Maximization , 2011, IEEE Journal of Selected Topics in Signal Processing.

[56]  W. Verstraeten,et al.  Nonlinear Hyperspectral Mixture Analysis for tree cover estimates in orchards , 2009 .

[57]  J. Jeffry Howbert,et al.  The Maximum Clique Problem , 2007 .

[58]  Cédric Richard,et al.  Nonparametric Detection of Nonlinearly Mixed Pixels and Endmember Estimation in Hyperspectral Images , 2015, IEEE Transactions on Image Processing.

[59]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[60]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[61]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[62]  Chein-I Chang,et al.  Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[63]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[64]  Jie Chen,et al.  Nonlinear Unmixing of Hyperspectral Data Based on a Linear-Mixture/Nonlinear-Fluctuation Model , 2013, IEEE Transactions on Signal Processing.

[65]  José M. Bioucas-Dias,et al.  Nonlinear mixture model for hyperspectral unmixing , 2009, Remote Sensing.

[66]  Chein-I Chang,et al.  Constrained band selection for hyperspectral imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[67]  Xiaorun Li,et al.  A Kernel Spatial Complexity-Based Nonlinear Unmixing Method of Hyperspectral Imagery , 2010, LSMS/ICSEE.

[68]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Alfonso Fernández-Manso,et al.  Spectral unmixing , 2012 .

[70]  Qi Wang,et al.  Hyperspectral Band Selection by Multitask Sparsity Pursuit , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[71]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[72]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[73]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[74]  Jean-Yves Tourneret,et al.  Nonlinear unmixing of hyperspectral images using a generalized bilinear model , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[75]  Chein-I Chang,et al.  A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks , 2001, IEEE Trans. Geosci. Remote. Sens..

[76]  Antonio J. Plaza,et al.  An overview on hyperspectral unmixing: Geometrical, statistical, and sparse regression based approaches , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[77]  Fang Liu,et al.  Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[78]  Mikhail Batsyn,et al.  Speeding up branch and bound algorithms for solving the maximum clique problem , 2013, Journal of Global Optimization.

[79]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[80]  Jean-Yves Tourneret,et al.  Supervised nonlinear spectral unmixing using a polynomial post nonlinear model for hyperspectral imagery , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[81]  Jacek M. Zurada,et al.  Normalized Mutual Information Feature Selection , 2009, IEEE Transactions on Neural Networks.

[82]  Qi Wang,et al.  Dual-Clustering-Based Hyperspectral Band Selection by Contextual Analysis , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[83]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.