Expert system for ode chemical kinetic model identification by using a transfer of information numerical strategy

Abstract Recently developed numerical data analysis techniques could be worthy instruments to check/validate chemical reaction paths and to build/reduce (Nonlinear) Kinetic Models ((N)KM). The developed Expert System (ES) includes a number of numerical procedures (concentration trajectory analysis, transfer of information numerical strategy for initial guess generation, Concomitant Parameter Estimation and Model Reduction (CPEMR)) interconnected to ensure high reliability in identifying the more suitable Ordinary Differential Equations (ODE) - NKM and in finding the global Parameter Estimate (PE) solution.

[1]  M. Lobo,et al.  Robust and efficient nonlinear regression of kinetic systems using a direct search method , 1991 .

[2]  Park M. Reilly,et al.  The use of statistical methods to build mathematical models of chemical reacting systems , 1974 .

[3]  Gheorghe Maria,et al.  Kinetic model for methanol conversion to olefins , 1983 .

[4]  Determination of constrained lumping schemes for nonisothermal first-order reaction systems , 1991 .

[5]  L. M. Rose,et al.  45 non-linear experimental design with approximate models in reactor studies for process development , 1980 .

[7]  Y. P. Tang On the Estimation of Rate Constants for Complex Kinetic Models , 1971 .

[8]  Peter P. Valko,et al.  Principal component analysis of kinetic models , 1985 .

[9]  Wing Tsang,et al.  Chemical kinetic data base for hydrocarbon pyrolysis , 1992 .

[10]  G. Maria An adaptive strategy for solving kinetic model concomitant estimation — Reduction problems , 1989 .

[11]  R. B. Newell,et al.  The use of krasovskii's stability technique for control strategy evaluation and system design , 1980 .

[12]  C. R. Jones,et al.  Determination of Rate Constants for Complex Kinetics Models , 1967 .

[13]  Lumping analysis for the methanol conversion to olefins kinetic model , 1988 .

[14]  Statistical identification of a reaction network using an integral plug flow reactor , 1980 .

[15]  G. Bond,et al.  Catalysis, science and technology , 1983 .

[16]  Gheorghe Maria,et al.  An adaptive parameter estimation used to obtain reduced kinetic models for the biological treatment process , 1989 .

[17]  Richard S.H. Mah,et al.  Treatment of general steady state process models in gross error identification , 1989 .

[18]  Peter P. Valko,et al.  A direct-indirect procedure for estimation of kinetic parameters , 1986 .

[19]  Gheorghe Maria,et al.  A modified matyas algorithm (MMA) for random process optimization , 1986 .

[20]  Gheorghe Maria,et al.  MODEL REDUCTION AND KINETIC PARAMETERS IDENTIFICATION FOR THE METHANOL CONVERSION TO OLEFINS , 1987 .

[21]  David T. Allen,et al.  Comparison of lumped and molecular modeling of hydropyrolysis , 1992 .

[22]  G. Maria,et al.  ARS Efficiency for solving model estimation-reduction problems , 1989 .

[23]  J E Bailey,et al.  MPS: An artificially intelligent software system for the analysis and synthesis of metabolic pathways , 1988, Biotechnology and bioengineering.

[24]  Kenneth B. Bischoff,et al.  Lumping strategy. 1. Introductory techniques and applications of cluster analysis , 1987 .

[25]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[26]  J. Happel,et al.  Studies of the structure of chemical mechanisms , 1992 .