Multiple nuclear gene sequences identify phylogenetic species boundaries in the rapidly radiating clade of Mexican ambystomatid salamanders

Delimiting the boundaries of species involved in radiations is critical to understanding the tempo and mode of lineage formation. Single locus gene trees may or may not reflect the underlying pattern of population divergence and lineage formation, yet they constitute the vast majority of the empirical data in species radiations. In this study we make use of an expressed sequence tag (EST) database to perform nuclear (nDNA) and mitochondrial (mtDNA) genealogical tests of species boundaries in Ambystoma ordinarium, a member of an adaptive radiation of metamorphic and paedomorphic salamanders (the Ambystoma tigrinum complex) that have diversified across terrestrial and aquatic environments. Gene tree comparisons demonstrate extensive nonmonophyly in the mtDNA genealogy of A. ordinarium, while seven of eight independent nuclear loci resolve the species as monophyletic or nearly so, and diagnose it as a well‐resolved genealogical species. A differential introgression hypothesis is supported by the observation that western A. ordinarium localities contain mtDNA haplotypes that are identical or minimally diverged from haplotypes sampled from a nearby paedomorphic species, Ambystoma dumerilii, while most nDNA trees place these species in distant phylogenetic positions. These results provide a strong example of how historical introgression can lead to radical differences between gene trees and species histories, even among currently allopatric species with divergent life history adaptations and morphologies. They also demonstrate how EST‐based nuclear resources can be used to more fully resolve the phylogenetic history of species radiations.

[1]  E. H. Taylor New salamanders from Mexico, with a discussion of certain known forms , 1940 .

[2]  S. A. Barnett,et al.  The major features of evolution , 1955 .

[3]  W. Watts,et al.  Paleoecological Studies at Lake Patzcuaro on the West-Central Mexican Plateau and at Chalco in the Basin of Mexico , 1982, Quaternary Research.

[4]  F. Tajima Evolutionary relationship of DNA sequences in finite populations. , 1983, Genetics.

[5]  H. Shaffer EVOLUTION IN A PAEDOMORPHIC LINEAGE. I. AN ELECTROPHORETIC ANALYSIS OF THE MEXICAN AMBYSTOMATID SALAMANDERS , 1984, Evolution; international journal of organic evolution.

[6]  H. Shaffer EVOLUTION IN A PAEDOMORPHIC LINEAGE. II. ALLOMETRY AND FORM IN THE MEXICAN AMBYSTOMATID SALAMANDERS , 1984, Evolution; international journal of organic evolution.

[7]  R. Hudson,et al.  Statistical properties of the number of recombination events in the history of a sample of DNA sequences. , 1985, Genetics.

[8]  H. Shaffer,et al.  PATTERNS OF VARIATION IN AQUATIC AMBYSTOMATID SALAMANDERS: KINEMATICS OF THE FEEDING MECHANISM , 1985, Evolution; international journal of organic evolution.

[9]  John C. Avise,et al.  PHYLOGENETIC RELATIONSHIPS OF MITOCHONDRIAL DNA UNDER VARIOUS DEMOGRAPHIC MODELS OF SPECIATION , 1986 .

[10]  M. Nei,et al.  Relationships between gene trees and species trees. , 1988, Molecular biology and evolution.

[11]  F. Tajima Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. , 1989, Genetics.

[12]  H. A. Orr,et al.  PATTERNS OF SPECIATION IN DROSOPHILA , 1989, Evolution; international journal of organic evolution.

[13]  John Alroy,et al.  Principles of genealogical concordance in species concepts and biological taxonomy , 1990 .

[14]  E. Gittenberger,et al.  What about non-adaptive radiation? , 1991 .

[15]  W. Li,et al.  Statistical tests of neutrality of mutations. , 1993, Genetics.

[16]  J. Patton,et al.  Paraphyly, polyphyly, and the nature of species boundaries in pocket gophers (Genus Thomomys) , 1994 .

[17]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[18]  W. Moore INFERRING PHYLOGENIES FROM mtDNA VARIATION: MITOCHONDRIAL‐GENE TREES VERSUS NUCLEAR‐GENE TREES , 1995, Evolution; international journal of organic evolution.

[19]  S. Voss,et al.  PHYLOGENETIC AND MECHANISTIC ANALYSIS OF A DEVELOPMENTALLY INTEGRATED CHARACTER COMPLEX : ALTERNATE LIFE HISTORY MODES IN AMBYSTOMATID SALAMANDERS , 1996 .

[20]  S. Voss,et al.  What insights into the developmental traits of urodeles does the study of interspecific hybrids provide? , 1996, The International journal of developmental biology.

[21]  THE POLYTYPIC SPECIES REVISITED: GENETIC DIFFERENTIATION AND MOLECULAR PHYLOGENETICS OF THE TIGER SALAMANDER AMBYSTOMA TIGRINUM (AMPHIBIA: CAUDATA) COMPLEX , 1996 .

[22]  H. Shaffer,et al.  THE POLYTYPIC SPECIES REVISITED: GENETIC DIFFERENTIATION AND MOLECULAR PHYLOGENETICS OF THE TIGER SALAMANDER AMBYSTOMA TIGRINUM (AMPHIBIA: CAUDATA) COMPLEX , 1996, Evolution; international journal of organic evolution.

[23]  G. Hoelzer INFERRING PHYLOGENIES FROM mtDNA VARIATION: MITOCHONDRIAL‐GENE TREES VERSUS NUCLEAR‐GENE TREES REVISITED , 1997, Evolution; international journal of organic evolution.

[24]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[25]  J. Klein,et al.  Persistence of neutral polymorphisms in Lake Victoria cichlid fish. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Avise,et al.  Population structure in the American oyster as inferred by nuclear gene genealogies. , 1998, Molecular biology and evolution.

[27]  P. Boag,et al.  Phylogenetics of Darwin's Finches: Paraphyly in the Tree-Finches, and Two Divergent Lineages in the Warbler Finch , 1999 .

[28]  K. Queiroz The General Lineage Concept of Species and the Defining Properties of the Species Category , 1999 .

[29]  B. Grant,et al.  Phylogeny of Darwin's finches as revealed by mtDNA sequences. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[30]  T. Kocher,et al.  Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Bin Ma,et al.  From Gene Trees to Species Trees , 2000, SIAM J. Comput..

[32]  R. Highton DETECTING CRYPTIC SPECIES USING ALLOZYME DATA , 2000 .

[33]  K. Crandall,et al.  TCS: a computer program to estimate gene genealogies , 2000, Molecular ecology.

[34]  J. Wakeley,et al.  THE EFFECTS OF SUBDIVISION ON THE GENETIC DIVERGENCE OF POPULATIONS AND SPECIES , 2000, Evolution; international journal of organic evolution.

[35]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[36]  F. Cipriano,et al.  PREDICTING NUCLEAR GENE COALESCENCE FROM MITOCHONDRIAL DATA: THE THREE-TIMES RULE , 2001 .

[37]  H. Shaffer,et al.  SPATIALLY AUTOCORRELATED DEMOGRAPHY AND INTERPOND DISPERSAL IN THE SALAMANDER AMBYSTOMA CALIFORNIENSE , 2001 .

[38]  F. Cipriano,et al.  PREDICTING NUCLEAR GENE COALESCENCE FROM MITOCHONDRIAL DATA: THE THREE‐TIMES RULE , 2001, Evolution; international journal of organic evolution.

[39]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[40]  P. Donnelly,et al.  A new statistical method for haplotype reconstruction from population data. , 2001, American journal of human genetics.

[41]  S. Voss,et al.  Conserved vertebrate chromosome segments in the large salamander genome. , 2001, Genetics.

[42]  M. Nishida,et al.  Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of the insertion of retroposons. , 2001, Molecular biology and evolution.

[43]  D. Schluter Ecology and the origin of species. , 2001, Trends in ecology & evolution.

[44]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[45]  M. Hare Prospects for nuclear gene phylogeography , 2001 .

[46]  A. Meyer,et al.  Population structure in two sympatric species of the Lake Tanganyika cichlid tribe Eretmodini: evidence for introgression , 2001, Molecular ecology.

[47]  G. Turner The Ecology of Adaptive Radiation , 2001, Heredity.

[48]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[49]  K Theodorides,et al.  Comparison of EST libraries from seven beetle species: towards a framework for phylogenomics of the Coleoptera , 2002, Insect molecular biology.

[50]  MOLECULAR CORRELATES OF REPRODUCTIVE ISOLATION , 2002, Evolution; international journal of organic evolution.

[51]  K. Shaw Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: What mtDNA reveals and conceals about modes of speciation in Hawaiian crickets , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. Hudson,et al.  MATHEMATICAL CONSEQUENCES OF THE GENEALOGICAL SPECIES CONCEPT , 2002, Evolution; international journal of organic evolution.

[53]  S. Voss,et al.  Hybridization between a rare, native tiger salamander (Ambystoma californiense) and its introduced congener , 2003 .

[54]  C. A. Machado,et al.  The causes of phylogenetic conflict in a classic Drosophila species group , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[55]  G. Hewitt,et al.  Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects , 2003, Molecular ecology.

[56]  Xavier Messeguer,et al.  DnaSP, DNA polymorphism analyses by the coalescent and other methods , 2003, Bioinform..

[57]  J. Sites,et al.  Sampling strategies for delimiting species: genes, individuals, and populations in the Liolaemus elongatus-kriegi complex (Squamata: Liolaemidae) in Andean-Patagonian South America. , 2003, Systematic biology.

[58]  D. J. Funk,et al.  Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA , 2003 .

[59]  P. Boursot,et al.  Nuclear ribosomal DNA monophyly versus mitochondrial DNA polyphyly in two closely related mite species: the influence of life history and molecular drive , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[60]  D. Nickerson,et al.  The utility of single nucleotide polymorphisms in inferences of population history , 2003 .

[61]  R. Harrison,et al.  Nuclear gene genealogies reveal historical, demographic and selective factors associated with speciation in field crickets. , 2003, Genetics.

[62]  B. Grant,et al.  INBREEDING AND INTERBREEDING IN DARWIN'S FINCHES , 2003, Evolution; international journal of organic evolution.

[63]  R. Hudson,et al.  STOCHASTICITY OVERRULES THE “THREE-TIMES RULE”: GENETIC DRIFT, GENETIC DRAFT, AND COALESCENCE TIMES FOR NUCLEAR LOCI VERSUS MITOCHONDRIAL DNA , 2003, Evolution; international journal of organic evolution.

[64]  Noah A Rosenberg,et al.  THE SHAPES OF NEUTRAL GENE GENEALOGIES IN TWO SPECIES: PROBABILITIES OF MONOPHYLY, PARAPHYLY, AND POLYPHYLY IN A COALESCENT MODEL , 2003, Evolution; international journal of organic evolution.

[65]  A MULTILOCUS GENEALOGICAL APPROACH TO PHYLOGENETIC SPECIES RECOGNITION IN THE MODEL EUKARYOTE NEUROSPORA , 2003, Evolution; international journal of organic evolution.

[66]  D. Tautz,et al.  Patterns of Speciation , 2004 .

[67]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[68]  H. Shaffer,et al.  ENVIRONMENT‐DEPENDENT ADMIXTURE DYNAMICS IN A TIGER SALAMANDER HYBRID ZONE , 2004, Evolution; international journal of organic evolution.

[69]  H. Shaffer,et al.  The molecular phylogenetics of endangerment: cryptic variation and historical phylogeography of the California tiger salamander, Ambystoma californiense , 2004, Molecular ecology.

[70]  Steven Poe,et al.  BIRDS IN A BUSH: FIVE GENES INDICATE EXPLOSIVE EVOLUTION OF AVIAN ORDERS , 2004, Evolution; international journal of organic evolution.

[71]  G. Luikart,et al.  SNPs in ecology, evolution and conservation , 2004 .

[72]  J. W. Sites,et al.  OPERATIONAL CRITERIA FOR DELIMITING SPECIES , 2004 .

[73]  Bianca Habermann,et al.  From biomedicine to natural history research: EST resources for ambystomatid salamanders , 2004, BMC Genomics.

[74]  J. Losos,et al.  Partial island submergence and speciation in an adaptive radiation: a multilocus analysis of the Cuban green anoles , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[75]  D. Weisrock,et al.  Phylogeographic analysis of mitochondrial gene flow and introgression in the salamander, Plethodon shermani , 2005, Molecular ecology.

[76]  LEAKY PREZYGOTIC ISOLATION AND POROUS GENOMES: RAPID INTROGRESSION OF MATERNALLY INHERITED DNA , 2005, Evolution; international journal of organic evolution.

[77]  S. Voss,et al.  A Comprehensive Expressed Sequence Tag Linkage Map for Tiger Salamander and Mexican Axolotl: Enabling Gene Mapping and Comparative Genomics in Ambystoma , 2005, Genetics.

[78]  Deborah A Nickerson,et al.  Comprehensive identification and characterization of diallelic insertion-deletion polymorphisms in 330 human candidate genes. , 2005, Human molecular genetics.

[79]  S. Voss,et al.  Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes. , 2005, Gene.