Le traitement des solutions quasi optimales en programmation linéaire continue : une synthèse
暂无分享,去创建一个
[1] G. Tarry,et al. Le problème des labyrinthes , 1895 .
[2] A. Charnes. Optimality and Degeneracy in Linear Programming , 1952 .
[3] H. Raiffa,et al. 3. The Double Description Method , 1953 .
[4] M. Balinski. An algorithm for finding all vertices of convex polyhedral sets , 1959 .
[5] V. Klee. On the Number of Vertices of a Convex Polytope , 1964, Canadian Journal of Mathematics.
[6] N. Chernikova. Brief communicationAlgorithm for finding a general formula for the non-negative solutions of a system of linear inequalities☆ , 1965 .
[7] Miroslav Manas,et al. Finding all vertices of a convex polyhedron , 1968 .
[8] T. H. Mattheiss,et al. An Algorithm for Determining Irrelevant Constraints and all Vertices in Systems of Linear Inequalities , 1973, Oper. Res..
[9] H. Greenberg. An algorithm for determining redundant inequalities and all solutions to convex polyhedra , 1975 .
[10] C. Panne. Methods for Linear and Quadratic Programming , 1975 .
[11] La programmation linéaire appliquée , 1979 .
[12] J. G. Evans,et al. Postoptimal Analyses, Parametric Programming, and Related Topics , 1979 .
[13] T. H. Matheiss,et al. A Survey and Comparison of Methods for Finding All Vertices of Convex Polyhedral Sets , 1980, Math. Oper. Res..
[14] J. Siskos. Comment modéliser les préférences au moyen de fonctions d'utilité auditives , 1980 .
[15] Les Proll,et al. An improved vertex enumeration algorithm , 1982 .
[16] Michel Rizzi,et al. Une nouvelle méthode d'aide à la décision en avenir incertain , 1982 .
[17] J. Siskos. Application de la méthode UTA I à un problème de sélection de points de vente mettant en jeu des critères multiples , 1983 .