On the maximum ABC index of bipartite graphs without pendent vertices

Abstract For a simple graph G, the atom–bond connectivity index (ABC) of G is defined as ABC(G) = ∑ u v ∈ E ( G ) d ( u ) + d ( v ) − 2 d ( u ) d ( v ) , $\sum_{uv\in{}E(G)} \sqrt{\frac{d(u)+d(v)-2}{d(u)d(v)}},$where d(v) denotes the degree of vertex v of G. In this paper, we prove that for any bipartite graph G of order n ≥ 6, size 2n − 3 with δ(G) ≥ 2, A B C ( G ) ≤ 2 ( n − 6 ) + 2 3 ( n − 2 ) n − 3 + 2 , $ABC(G)\leq{}\sqrt{2}(n-6)+2\sqrt{\frac{3(n-2)}{n-3}}+2,$and we characterize all extreme bipartite graphs.

[1]  A. R. Ashrafi,et al.  Maximum values of atom–bond connectivity index in the class of tetracyclic graphs , 2014 .

[2]  Ivan Gutman,et al.  On atom-bond connectivity index and its chemical applicability , 2012 .

[3]  Ante Graovac,et al.  Atom-bond connectivity index of trees , 2009, Discret. Appl. Math..

[4]  M. Randic Characterization of molecular branching , 1975 .

[5]  Darko Dimitrov On structural properties of trees with minimal atom-bond connectivity index , 2014, Discret. Appl. Math..

[6]  Zehui Shao,et al.  On the Maximum ABC Index of Graphs With Prescribed Size and Without Pendent Vertices , 2018, IEEE Access.

[7]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[8]  A. R. Ashrafi,et al.  Maximum values of atom–bond connectivity index in the class of tricyclic graphs , 2016 .

[9]  Mikhail Goubko,et al.  ABC Index of Trees with Fixed Number of Leaves , 2015 .

[10]  Bo Zhou,et al.  Extremal trees with fixed degree sequence for atom-bond connectivity index , 2012 .

[11]  Matthias Dehmer,et al.  On structure-sensitivity of degree-based topological indices , 2013, Appl. Math. Comput..

[12]  郭晓峰,et al.  Extreme Atom-Bond Connectivity Index of Graphs , 2011 .

[13]  Darko Dimitrov,et al.  On structural properties of trees with minimal atom-bond connectivity index III: Trees with pendent paths of length three , 2016, Appl. Math. Comput..

[14]  I. Gutman Degree-Based Topological Indices , 2013 .

[15]  Hua Wang,et al.  Maximum atom-bond connectivity index with given graph parameters , 2016, Discret. Appl. Math..

[16]  Darko Dimitrov On structural properties of trees with minimal atom-bond connectivity index II: Bounds on B1- and B2-branches , 2016, Discret. Appl. Math..

[17]  Darko Dimitrov Efficient computation of trees with minimal atom-bond connectivity index , 2013, Appl. Math. Comput..

[18]  Feng Ming Dong,et al.  On atom-bond connectivity index of connected graphs , 2011, Discret. Appl. Math..

[19]  Zehui Shao,et al.  On the maximum ABC index of graphs without pendent vertices , 2017, Appl. Math. Comput..

[20]  Wenshui Lin,et al.  On the minimal ABC index of trees with k leaves , 2017, Discret. Appl. Math..

[21]  Bo Zhou,et al.  Further results on atom-bond connectivity index of trees , 2010, Discret. Appl. Math..

[22]  N. Trinajstic,et al.  Comparison between first geometric–arithmetic index and atom-bond connectivity index , 2010 .

[23]  Ernesto Estrada,et al.  AN ATOM-BOND CONNECTIVITY INDEX : MODELLING THE ENTHALPY OF FORMATION OF ALKANES , 1998 .

[24]  Ernesto Estrada Atom–bond connectivity and the energetic of branched alkanes , 2008 .

[25]  Kinkar Chandra Das,et al.  On atom-bond connectivity index of graphs , 2019, Journal of Mathematical Analysis and Applications.

[26]  Anna Torriero,et al.  New Upper Bounds for the ABC Index , 2016 .

[27]  Boris Furtula,et al.  The ABC Index Conundrum , 2013 .