Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions.

Ferroelectric tunnel junctions (FTJs), composed of two metal electrodes separated by an ultrathin ferroelectric barrier, have attracted much attention as promising candidates for non-volatile resistive memories. Theoretical and experimental works have revealed that the tunnelling resistance switching in FTJs originates mainly from a ferroelectric modulation on the barrier height. However, in these devices, modulation on the barrier width is very limited, although the tunnelling transmittance depends on it exponentially as well. Here we propose a novel tunnelling heterostructure by replacing one of the metal electrodes in a normal FTJ with a heavily doped semiconductor. In these metal/ferroelectric/semiconductor FTJs, not only the height but also the width of the barrier can be electrically modulated as a result of a ferroelectric field effect, leading to a greatly enhanced tunnelling electroresistance. This idea is implemented in Pt/BaTiO3/Nb:SrTiO3 heterostructures, in which an ON/OFF conductance ratio above 10(4), about one to two orders greater than those reported in normal FTJs, can be achieved at room temperature. The giant tunnelling electroresistance, reliable switching reproducibility and long data retention observed in these metal/ferroelectric/semiconductor FTJs suggest their great potential in non-destructive readout non-volatile memories.

[1]  Electroresistance effects in ferroelectric tunnel barriers , 2010, 1006.1716.

[2]  M. Saifi,et al.  Dielectric Properties of Strontium Titanate at Low Temperature , 1970 .

[3]  H. Okushi,et al.  Temperature dependence of carrier transport and resistance switching in Pt / Sr Ti 1 − x Nb x O 3 Schottky junctions , 2011 .

[4]  V. Gopalan,et al.  Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films , 2004, Science.

[5]  Jürgen Schubert,et al.  Ferroelectric properties of epitaxial BaTiO3 thin films and heterostructures on different substrates , 2005 .

[6]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[7]  A. Petraru,et al.  Crossing an Interface: Ferroelectric Control of Tunnel Currents in Magnetic Complex Oxide Heterostructures , 2010 .

[8]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[9]  M. Okuyama,et al.  c‐axis preferred orientation of laser ablated epitaxial PbTiO3 films and their electrical properties , 1994 .

[10]  A. Gruverman,et al.  Tunnel electroresistance in junctions with ultrathin ferroelectric Pb(Zr0.2Ti0.8)O3 barriers , 2012 .

[11]  Mathews,et al.  Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures , 1997, Science.

[12]  M. Alexe,et al.  Reversible electrical switching of spin polarization in multiferroic tunnel junctions. , 2012, Nature materials.

[13]  M. Grimsditch,et al.  The elastic, piezoelectric and dielectric constants of tetragonal PbTiO3 single crystals , 1993 .

[14]  D. Fu,et al.  Thickness dependence of stress in lead titanate thin films deposited on Pt-coated Si , 2000 .

[15]  E. Tsymbal,et al.  Ferroelectric tunnel memristor. , 2012, Nano letters.

[16]  C. M. Folkman,et al.  Enhancement of Ferroelectric Polarization Stability by Interface Engineering , 2012, Advanced materials.

[17]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[18]  E. Tsymbal,et al.  Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. , 2013, Nature materials.

[19]  A. Fert,et al.  Tunnel junctions with multiferroic barriers. , 2007, Nature materials.

[20]  Y. Park,et al.  Critical thickness of ultrathin ferroelectric BaTiO3 films , 2005 .

[21]  N. D. Mathur,et al.  Ferroelectric Control of Spin Polarization , 2010, Science.

[22]  P. M. Tedrow,et al.  Spin-Dependent Tunneling into Ferromagnetic Nickel , 1971 .

[23]  Ho Won Jang,et al.  Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. , 2009, Nano letters.

[24]  Hermann Kohlstedt,et al.  Tunneling Across a Ferroelectric , 2006, Science.

[25]  Paul J. McWhorter,et al.  Physics of the ferroelectric nonvolatile memory field effect transistor , 1992 .

[26]  E. Tsymbal,et al.  Giant Electroresistance in Ferroelectric Tunnel Junctions , 2005, cond-mat/0502109.

[27]  H. Kumigashira,et al.  Angle-resolved photoemission study of Nb-doped SrTiO3 , 2009 .

[28]  I. Giaever,et al.  Energy gap in superconductors measured by electron tunneling. [Al-AlO-Pb] , 1960 .

[29]  R. M. Wolf,et al.  Field-dependent permittivity in metal-semiconducting SrTiO3 Schottky diodes , 1995 .

[30]  Germany,et al.  Theoretical current-voltage characteristics of ferroelectric tunnel junctions , 2005, cond-mat/0503546.

[31]  D. J. Kim,et al.  Ferroelectric properties of SrRuO3∕BaTiO3∕SrRuO3 ultrathin film capacitors free from passive layers , 2005, cond-mat/0506495.

[32]  V. Garcia,et al.  Giant tunnel electroresistance with PbTiO3 ferroelectric tunnel barriers , 2010 .

[33]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[34]  Tetsuya Yamamoto,et al.  Fabrication and characterization of Ba1−xKxBiO3/Nb-doped SrTiO3 all-oxide-type Schottky junctions , 1997 .

[35]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[36]  Su-Jae Lee,et al.  Low-frequency dielectric relaxation of BaTiO3 thin-film capacitors , 1999 .

[37]  K. Iijima,et al.  Epitaxial growth and dielectric properties of BaTiO3 films on Pt electrodes by reactive evaporation , 1994 .

[38]  Julie Grollier,et al.  Solid-state memories based on ferroelectric tunnel junctions. , 2012, Nature nanotechnology.

[39]  Xiaojun Weng,et al.  Coexistence of tunneling magnetoresistance and electroresistance at room temperature in La0.7Sr0.3MnO3/(Ba, Sr)TiO3/La0.7Sr0.3MnO3 multiferroic tunnel junctions , 2011 .