Sparse Approximations for Non-Conjugate Gaussian Process Regression
暂无分享,去创建一个
[1] Robert Price,et al. A useful theorem for nonlinear devices having Gaussian inputs , 1958, IRE Trans. Inf. Theory.
[2] G. Bonnet. Transformations des signaux aléatoires a travers les systèmes non linéaires sans mémoire , 1964 .
[3] D. Böhning. Multinomial logistic regression algorithm , 1992 .
[4] Michael I. Jordan,et al. Bayesian parameter estimation via variational methods , 2000, Stat. Comput..
[5] Christopher K. I. Williams,et al. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .
[6] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[7] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[8] John D. Lafferty,et al. Correlated Topic Models , 2005, NIPS.
[9] Guillaume Bouchard. Efficient Bounds for the Softmax Function and Applications to Approximate Inference in Hybrid models , 2008 .
[10] Hugh F. Durrant-Whyte,et al. On entropy approximation for Gaussian mixture random vectors , 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.
[11] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[12] Mohammad Emtiyaz Khan,et al. Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models , 2011, ICML.
[13] Mohammad Emtiyaz Khan,et al. Fast Bayesian Inference for Non-Conjugate Gaussian Process Regression , 2012, NIPS.
[14] David M. Blei,et al. Nonparametric variational inference , 2012, ICML.
[15] Mohammad Emtiyaz Khan,et al. Variational learning for latent Gaussian model of discrete data , 2012 .
[16] Miguel Lázaro-Gredilla,et al. Doubly Stochastic Variational Bayes for non-Conjugate Inference , 2014, ICML.
[17] Daan Wierstra,et al. Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.
[18] Sean Gerrish,et al. Black Box Variational Inference , 2013, AISTATS.
[19] Edwin V. Bonilla,et al. Automated Variational Inference for Gaussian Process Models , 2014, NIPS.
[20] Stephen J. Roberts,et al. Variational Inference for Gaussian Process Modulated Poisson Processes , 2014, ICML.
[21] James Hensman,et al. Scalable Variational Gaussian Process Classification , 2014, AISTATS.
[22] Max Welling,et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap , 2014, ICML.