Oligomer synthesis by priming deficient polymerase in hepatitis B virus core particle.

[1]  Jianming Hu,et al.  Distinct Requirement for Two Stages of Protein-Primed Initiation of Reverse Transcription in Hepadnaviruses , 2002, Journal of Virology.

[2]  M. Nassal,et al.  dNTP versus NTP discrimination by phenylalanine 451 in duck hepatitis B virus P protein indicates a common structure of the dNTP-binding pocket with other reverse transcriptases. , 2002, Nucleic acids research.

[3]  J. Tavis,et al.  Evidence that the first strand-transfer reaction of duck hepatitis B virus reverse transcription requires the polymerase and that strand transfer is not needed for the switch of the polymerase to the elongation mode of DNA synthesis. , 2000, The Journal of general virology.

[4]  W. Ryu,et al.  Evidence that the 5′-End Cap Structure Is Essential for Encapsidation of Hepatitis B Virus Pregenomic RNA , 2000, Journal of Virology.

[5]  R. Thomssen,et al.  Hepatitis B Virus Core Gene Mutations Which Block Nucleocapsid Envelopment , 2000, Journal of Virology.

[6]  M. Nassal,et al.  A Small 2′-OH- and Base-dependent Recognition Element Downstream of the Initiation Site in the RNA Encapsidation Signal Is Essential for Hepatitis B Virus Replication Initiation* , 1999, The Journal of Biological Chemistry.

[7]  M. Nassal,et al.  Formation of a Functional Hepatitis B Virus Replication Initiation Complex Involves a Major Structural Alteration in the RNA Template , 1998, Molecular and Cellular Biology.

[8]  J. Tavis,et al.  The Duck Hepatitis B Virus Polymerase Is Activated by Its RNA Packaging Signal, ɛ , 1998, Journal of Virology.

[9]  R. Lanford,et al.  Transcomplementation of nucleotide priming and reverse transcription between independently expressed TP and RT domains of the hepatitis B virus reverse transcriptase , 1997, Journal of virology.

[10]  C. Seeger,et al.  Hepadnavirus assembly and reverse transcription require a multi‐component chaperone complex which is incorporated into nucleocapsids , 1997, The EMBO journal.

[11]  J. Tavis,et al.  Evidence for activation of the hepatitis B virus polymerase by binding of its RNA template , 1996, Journal of virology.

[12]  C. Seeger,et al.  Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Tavis,et al.  RNA sequences controlling the initiation and transfer of duck hepatitis B virus minus-strand DNA , 1995, Journal of virology.

[14]  F. Zoulim,et al.  Role of RNA in enzymatic activity of the reverse transcriptase of hepatitis B viruses , 1994, Journal of virology.

[15]  J. Tavis,et al.  Hepadnavirus reverse transcription initiates within the stem-loop of the RNA packaging signal and employs a novel strand transfer , 1994, Journal of virology.

[16]  R. Bartenschlager,et al.  Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription , 1994, Journal of virology.

[17]  F. Zoulim,et al.  Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase , 1994, Journal of virology.

[18]  C. Seeger,et al.  The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis , 1992, Cell.

[19]  R. Bartenschlager,et al.  Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. , 1992, The EMBO journal.

[20]  H. Blum,et al.  Primary hepatocellular carcinoma. , 1991, The New England journal of medicine.

[21]  A. Faruqi,et al.  Pregenomic RNA encapsidation analysis of eleven missense and nonsense polymerase mutants of human hepatitis B virus , 1991, Journal of virology.

[22]  J. Wands,et al.  Naturally occurring missense mutation in the polymerase gene terminating hepatitis B virus replication , 1991, Journal of virology.

[23]  H. Varmus,et al.  Effects of insertional and point mutations on the functions of the duck hepatitis B virus polymerase , 1990, Journal of virology.

[24]  R. Bartenschlager,et al.  The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation , 1990, Journal of virology.

[25]  H. Varmus,et al.  Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as well as for reverse transcription , 1990, Nature.

[26]  G. Radziwill,et al.  Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity , 1990, Journal of virology.

[27]  R. Bartenschlager,et al.  The amino‐terminal domain of the hepadnaviral P‐gene encodes the terminal protein (genome‐linked protein) believed to prime reverse transcription. , 1988, The EMBO journal.