In silico validation procedure for cell volume fraction estimation through dielectric spectroscopy

Dielectric spectroscopy has proved to be a good tool for analyzing the passive electrical properties of biological tissues as well as those of inhomogeneous materials. This technique promises to be a valid alternative to the classical ones based on metabolites to monitor the growth and cell volume fraction of cell cultures in a simple and minimally invasive way. In order to obtain an accurate estimation of the cell volume fraction as a function of the permittivity of the suspension, a simple in silico procedure is proposed. The procedure is designed to perform homogenization from the micro-scale to the macro-scale using simple analytical models and simulation setups hypothesizing the properties of diluted suspension (cell volume fraction less than 0.2). Results obtained show the possibility to overcome some trouble involving the analytical treatment of the cellular shape by considering a sphere with the same permittivity in the quantitative analysis of the cell volume fraction. The entire study is based on computer simulations performed in order to verify the correctness of the procedure. Obtained data are used in a cell volume fraction estimation scenario to show the effectiveness of the procedure.

[1]  H. Schwan Electrical properties of tissue and cell suspensions. , 1957, Advances in biological and medical physics.

[2]  Airton Ramos,et al.  Improved numerical approach for electrical modeling of biological cell clusters , 2010, Medical & Biological Engineering & Computing.

[3]  Koji Asami,et al.  Characterization of heterogeneous systems by dielectric spectroscopy , 2002 .

[4]  C. Cametti,et al.  Dielectric spectroscopy of erythrocyte cell suspensions. A comparison between Looyenga and Maxwell-Wagner-Hanai effective medium theory formulations , 2002 .

[5]  Rudolf Höber,et al.  Messungen der inneren Leitfähigkeit von Zellen , 1913, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[6]  Urs von Stockar,et al.  On‐line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy , 2003, Biotechnology and bioengineering.

[7]  C. Cametti,et al.  Dielectric properties of aqueous zwitterionic liposome suspensions. , 2007, Bioelectrochemistry.

[8]  C. Cametti,et al.  Effect of shape on the dielectric properties of biological cell suspensions. , 2007, Bioelectrochemistry.

[9]  G. Fuhr,et al.  Dielectric single particle spectroscopy for measurement of dispersion , 1999, Medical & Biological Engineering & Computing.

[10]  R. W. Lau,et al.  The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. , 1996, Physics in medicine and biology.

[11]  M Biselli,et al.  Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. , 1998, Journal of biotechnology.

[12]  H. Schwan,et al.  Electrical Properties of the Plasma Membrane of Erythrocytes at Low Frequencies , 1956, Nature.

[13]  H. Fricke,et al.  The Complex Conductivity of a Suspension of Stratified Particles of Spherical or Cylindrical Form , 1955 .

[14]  Douglas B. Kell,et al.  Dielectric permittivity of microbial suspensions at radio frequencies: a novel method for the real-time estimation of microbial biomass , 1987 .

[15]  U von Stockar,et al.  On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. , 2002, Biotechnology and bioengineering.

[16]  Karl Willy Wagner,et al.  Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen , 1914 .

[17]  Koji Asami,et al.  Dielectric dispersion in biological cells of complex geometry simulated by the three-dimensional finite difference method , 2006 .

[18]  B. Ristic,et al.  Real-time extraction of tissue impedance model parameters for electrical impedance spectrometer , 1999, Medical & Biological Engineering & Computing.

[20]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[21]  Rudolf Höber,et al.  Eine Methode, die elektrische Leitfähigkeit im Innern von Zellen zu messen , 1910, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[22]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[23]  H. Fricke,et al.  The Electric Permittivity of a Dilute Suspension of Membrane‐Covered Ellipsoids , 1953 .

[24]  C Gabriel,et al.  The dielectric properties of biological tissues: I. Literature survey. , 1996, Physics in medicine and biology.

[25]  Rudolf Höber,et al.  Ein zweites Verfahren, die Leitfähigkeit im Innern von Zellen zu messen , 1912, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[26]  Pedro Bertemes-Filho,et al.  Frequency-domain reconstruction of signals in electrical bioimpedance spectroscopy , 2009, Medical & Biological Engineering & Computing.

[27]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[28]  R. W. Lau,et al.  The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. , 1996, Physics in medicine and biology.

[29]  Tamaz Chelidze,et al.  Dielectric spectroscopy of blood , 2002 .