The recessive mutation nanomelia blocks the synthesis of a large aggregating proteoglycan (aggrecan) by avian embryo chondrocytes. Lack of aggrecan is associated with short stature, multiple morphological defects in cartilage, and embryo lethality. Bony defects have also been described, but were assumed to be a secondary consequence of the cartilage defect. However, two lines of evidence presented in this paper indicate that the aggrecan deficiency directly affects intramembranous bone. First, the morphology (i.e. projected area and shape) of certain membranous bones of nanomelia embryos was abnormal. Second, membranous bone from nanomelia embryos proved to be significantly stiffer in biomechanical tests that measured functional properties of the extracellular matrix. These findings were unexpected because intramembranous bones normally develop from mesenchyme and not from a cartilage intermediate, and they prompted a search for evidence of aggrecan expression in the bone of normal chick embryos. We report that: 1) aggrecan mRNA was identified by PCR analysis of total RNA isolated from day-13 chick embryo calvarium, 2) the PCR method successfully amplified aggrecan mRNA from primary chick embryo osteoblasts in culture, 3) in situ hybridization of membranous bone tissue sections demonstrated aggrecan expression by chick embryo osteoblasts in vivo, and 4) the aggrecan message was identified in Northern blots of calvarial mRNA probed at high stringency. The results of the molecular and biomechanical studies provide evidence that aggrecan is indeed expressed in membranous bone as well as cartilage. Altogether, these results suggest that aggrecan may contribute to the functional properties and the normal growth and development of avian membranous bone.