Hominoid-Specific Transposable Elements and KZFPs Facilitate Human Embryonic Genome Activation and Control Transcription in Naive Human ESCs

[1]  Erin C. Macaulay,et al.  Reawakening the Developmental Origins of Cancer Through Transposable Elements , 2020, Frontiers in Oncology.

[2]  Marta Machnik,et al.  Dynamic Signatures of the Epigenome: Friend or Foe? , 2020, Cells.

[3]  Anuj Kumar Jump around: transposons in and out of the laboratory , 2020, F1000Research.

[4]  Kathryn O'Neill,et al.  Mobile genomics: tools and techniques for tackling transposons , 2020, Philosophical Transactions of the Royal Society B.

[5]  V. Tarabykin,et al.  Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors , 2019, bioRxiv.

[6]  T. Swigut,et al.  Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation , 2018, eLife.

[7]  H. Niwa,et al.  Overlapping functions of Krüppel-like factor family members: targeting multiple transcription factors to maintain the naïve pluripotency of mouse embryonic stem cells , 2018, Development.

[8]  Lei Gao,et al.  Chromatin Accessibility Landscape in Human Early Embryos and Its Association with Evolution , 2018, Cell.

[9]  William A. Pastor,et al.  TFAP2C regulates transcription in human naive pluripotency by opening enhancers , 2018, Nature Cell Biology.

[10]  Yixuan Wang,et al.  The Role of KRAB-ZFPs in Transposable Element Repression and Mammalian Evolution. , 2017, Trends in genetics : TIG.

[11]  Christopher D. Brown,et al.  Transposable elements are the primary source of novelty in primate gene regulation , 2017, Genome research.

[12]  D. Trono,et al.  KRAB zinc finger proteins , 2017, Development.

[13]  Paul Bertone,et al.  Epigenetic resetting of human pluripotency , 2017, Development.

[14]  S. Petropoulos,et al.  Comprehensive Cell Surface Protein Profiling Identifies Specific Markers of Human Naive and Primed Pluripotent States , 2017, Cell stem cell.

[15]  D. Trono,et al.  A family of double-homeodomain transcription factors regulates zygotic genome activation in placental mammals , 2017, Nature Genetics.

[16]  J. Wen,et al.  C9ORF135 encodes a membrane protein whose expression is related to pluripotency in human embryonic stem cells , 2017, Scientific Reports.

[17]  D. Trono,et al.  KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks , 2017, Nature.

[18]  Denghui Liu,et al.  Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos. , 2017, Genome research.

[19]  Aziz Khan,et al.  Intervene: a tool for intersection and visualization of multiple gene or genomic region sets , 2017, BMC Bioinformatics.

[20]  C. Feschotte,et al.  Regulatory activities of transposable elements: from conflicts to benefits , 2016, Nature Reviews Genetics.

[21]  R. Jaenisch,et al.  Molecular Criteria for Defining the Naive Human Pluripotent State , 2016, Cell stem cell.

[22]  J. Joly,et al.  Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR , 2016, Genome Biology.

[23]  P. Bork,et al.  ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data , 2016, Molecular biology and evolution.

[24]  Sigal Shachar,et al.  3D Chromosome Regulatory Landscape of Human Pluripotent Cells. , 2016, Cell stem cell.

[25]  F. Tang,et al.  Epigenomic Landscape of Human Fetal Brain, Heart, and Liver* , 2015, The Journal of Biological Chemistry.

[26]  Timothy E. Reddy,et al.  Highly Specific Epigenome Editing by CRISPR/Cas9 Repressors for Silencing of Distal Regulatory Elements , 2015, Nature Methods.

[27]  M. Azim Surani,et al.  A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development , 2015, Cell.

[28]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[29]  E. Füchtbauer,et al.  The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses , 2015, Genes & development.

[30]  Howard Y. Chang,et al.  Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells , 2015, Nature.

[31]  H. Ng,et al.  Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. , 2015, Cell stem cell.

[32]  Floriane Plard,et al.  Comparative Analysis of Transposable Elements Highlights Mobilome Diversity and Evolution in Vertebrates , 2015, Genome biology and evolution.

[33]  M. Creyghton,et al.  Large-scale identification of coregulated enhancer networks in the adult human brain. , 2014, Cell reports.

[34]  Xiang Li,et al.  Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts. , 2014, Cell stem cell.

[35]  J. Nichols,et al.  Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human , 2014, Cell.

[36]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[37]  David Haussler,et al.  An evolutionary arms race between KRAB zinc finger genes 91/93 and SVA/L1 retrotransposons , 2014, Nature.

[38]  S. Yamanaka,et al.  Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential , 2014, Proceedings of the National Academy of Sciences.

[39]  F. Tang,et al.  The DNA methylation landscape of human early embryos , 2014, Nature.

[40]  D. Trono,et al.  Evolutionally dynamic L1 regulation in embryonic stem cells , 2014, Genes & development.

[41]  Aviv Regev,et al.  DNA methylation dynamics of the human preimplantation embryo , 2014, Nature.

[42]  R. Young,et al.  Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency , 2014, Cell stem cell.

[43]  Helen M. Rowe,et al.  Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency , 2014, Genome research.

[44]  D. Trono,et al.  Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements , 2014, Genome research.

[45]  G. Bourque,et al.  The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity , 2014, Nature Structural &Molecular Biology.

[46]  L. Stubbs,et al.  Deep Vertebrate Roots for Mammalian Zinc Finger Transcription Factor Subfamilies , 2014, Genome biology and evolution.

[47]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[48]  M. Suntsova,et al.  Human-specific endogenous retroviral insert serves as an enhancer for the schizophrenia-linked gene PRODH , 2013, Proceedings of the National Academy of Sciences.

[49]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[50]  Sean L. Evans,et al.  Modulation of LINE-1 and Alu/SVA Retrotransposition by Aicardi-Goutières Syndrome-Related SAMHD1 , 2013, Cell reports.

[51]  Ruiqiang Li,et al.  Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells , 2013, Nature Structural &Molecular Biology.

[52]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[53]  Shawn P. Driscoll,et al.  ES cell potency fluctuates with endogenous retrovirus activity , 2012, Nature.

[54]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[55]  S. Bergmann,et al.  The evolution of gene expression levels in mammalian organs , 2011, Nature.

[56]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[57]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[58]  H. Kimura,et al.  Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET , 2010, Nature.

[59]  Helen M. Rowe,et al.  KAP1 controls endogenous retroviruses in embryonic stem cells , 2010, Nature.

[60]  M. Batzer,et al.  The impact of retrotransposons on human genome evolution , 2009, Nature Reviews Genetics.

[61]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[62]  S. Goff,et al.  Embryonic stem cells use ZFP809 to silence retroviral DNAs , 2009, Nature.

[63]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[64]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[65]  W. J. Kent,et al.  The UCSC Genome Browser , 2003, Current protocols in bioinformatics.

[66]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[67]  R. Britten,et al.  Repetitive and Non-Repetitive DNA Sequences and a Speculation on the Origins of Evolutionary Novelty , 1971, The Quarterly Review of Biology.

[68]  B. Mcclintock Intranuclear systems controlling gene action and mutation. , 1956, Brookhaven symposia in biology.

[69]  Tao Ye,et al.  Interpreting and visualizing ChIP-seq data with the seqMINER software. , 2014, Methods in molecular biology.

[70]  Michael B. Stadler,et al.  Rapid neurogenesis through transcriptional activation in human stem cells , 2014 .

[71]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..