Area of Catalan paths on a checkerboard

It is known that the area of all Catalan paths of length n is equal to 4^n-2n+1n, which coincides with the number of inversions of all 321-avoiding permutations of length n+1. In this paper, a bijection between the two sets is established. Meanwhile, a number of interesting bijective results that pave the way to the required bijection are presented.

[1]  Kenneth H. Rosen,et al.  Catalan Numbers , 2002 .

[2]  Astrid Reifegerste The excedances and descents of bi-increasing permutations , 2002 .

[3]  J. Haglund The ,-Catalan numbers , 2007 .

[4]  Elisa Pergola Two bijections for the area of Dyck paths , 2001, Discret. Math..

[5]  Richard P. Stanley,et al.  Some Combinatorial Properties of Schubert Polynomials , 1993 .

[6]  D. G. Rogers,et al.  THE CATALAN NUMBERS, THE LEBESGUE INTEGRAL, AND 4N-2 , 1997 .

[7]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[8]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[9]  D. G. Rogers,et al.  The catalan numbers, the lebesgue integral, and 4n-2 , 1997 .

[10]  Wen-Jin Woan Area of Catalan paths , 2001, Discret. Math..

[11]  Gérard Viennot,et al.  Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..

[12]  Robin J. Chapman,et al.  Moments of Dyck paths , 1999, Discret. Math..

[13]  Renzo Sprugnoli,et al.  The Area Determined by Underdiagonal Lattice Paths , 1996, CAAP.

[14]  Emeric Deutsch,et al.  Dyck paths : generalities and terminology , 2003 .

[15]  Emeric Deutsch,et al.  A survey of the Fine numbers , 2001, Discret. Math..

[16]  Alberto Del Lungo,et al.  Some permutations with forbidden subsequences and their inversion number , 2001, Discret. Math..

[17]  Rodica Simion,et al.  Combinatorial Statistics on Non-crossing Partitions , 1994, J. Comb. Theory A.