Area of Catalan paths on a checkerboard
暂无分享,去创建一个
Sen-Peng Eu | Tung-Shan Fu | Szu-En Cheng | Sen-Peng Eu | S. Cheng | T. Fu
[1] Kenneth H. Rosen,et al. Catalan Numbers , 2002 .
[2] Astrid Reifegerste. The excedances and descents of bi-increasing permutations , 2002 .
[3] J. Haglund. The ,-Catalan numbers , 2007 .
[4] Elisa Pergola. Two bijections for the area of Dyck paths , 2001, Discret. Math..
[5] Richard P. Stanley,et al. Some Combinatorial Properties of Schubert Polynomials , 1993 .
[6] D. G. Rogers,et al. THE CATALAN NUMBERS, THE LEBESGUE INTEGRAL, AND 4N-2 , 1997 .
[7] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[8] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[9] D. G. Rogers,et al. The catalan numbers, the lebesgue integral, and 4n-2 , 1997 .
[10] Wen-Jin Woan. Area of Catalan paths , 2001, Discret. Math..
[11] Gérard Viennot,et al. Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..
[12] Robin J. Chapman,et al. Moments of Dyck paths , 1999, Discret. Math..
[13] Renzo Sprugnoli,et al. The Area Determined by Underdiagonal Lattice Paths , 1996, CAAP.
[14] Emeric Deutsch,et al. Dyck paths : generalities and terminology , 2003 .
[15] Emeric Deutsch,et al. A survey of the Fine numbers , 2001, Discret. Math..
[16] Alberto Del Lungo,et al. Some permutations with forbidden subsequences and their inversion number , 2001, Discret. Math..
[17] Rodica Simion,et al. Combinatorial Statistics on Non-crossing Partitions , 1994, J. Comb. Theory A.