Asymptotic Improvements to Quantum Circuits via Qutrits

Quantum computation is traditionally expressed in terms of quantum bits, or qubits. In this work, we instead consider three-level qutrits. Past work with qutrits has demonstrated only constant factor improvements, owing to the $\log_{2}$ (3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic depth (runtime) decomposition of the Generalized Toffoli gate using no ancilla-a significant improvement over linear depth for the best qubit-only equivalent. Our circuit construction also features a 70x improvement in two-qudit gate count over the qubit-only equivalent decomposition. This results in circuit cost reductions for important algorithms like quantum neurons and Grover search. We develop an open-source circuit simulator for qutrits, along with realistic near-term noise models which account for the cost of operating qutrits. Simulation results for these noise models indicate over 90% mean reliability (fidelity) for our circuit construction, versus under 30% for the qubit-only baseline. These results suggest that qutrits offer a promising path towards scaling quantum computation.

[1]  Thomas G. Draper Addition on a Quantum Computer , 2000, quant-ph/0008033.

[2]  Gerhard W. Dueck,et al.  A transformation based algorithm for reversible logic synthesis , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[3]  Stephen Gray,et al.  Accounting for errors in quantum algorithms via individual error reduction , 2018, npj Quantum Information.

[4]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[5]  Santa Barbara,et al.  Factoring with n + 2 clean qubits and n − 1 dirty qubits , 2017 .

[6]  Yale Fan,et al.  Applications of Multi-Valued Quantum Algorithms , 2008, 0809.0932.

[7]  Yushi Wang,et al.  Improved Complexity of Quantum Oracles for Ternary Grover Algorithm for Graph Coloring , 2011, 2011 41st IEEE International Symposium on Multiple-Valued Logic.

[8]  Peter W. Shor Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1999 .

[9]  Roberto Morandotti,et al.  On-chip generation of high-dimensional entangled quantum states and their coherent control , 2017, Nature.

[10]  Xiang Fu,et al.  QX: A high-performance quantum computer simulation platform , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[11]  J. C. Retamal,et al.  Qutrit quantum computer with trapped ions , 2003 .

[12]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[13]  Vahid Karimipour,et al.  Characterization of qutrit channels in terms of their covariance and symmetry properties , 2011, 1104.5680.

[14]  Todd A. Brun,et al.  A simple model of quantum trajectories , 2002 .

[15]  Sophia E. Economou,et al.  Fast microwave-driven three-qubit gates for cavity-coupled superconducting qubits , 2016, 1612.09384.

[16]  T.C.Ralph,et al.  Efficient Toffoli Gates Using Qudits , 2008, 0806.0654.

[17]  Archimedes Pavlidis,et al.  Arithmetic Circuits for Multilevel Qudits Based on Quantum Fourier Transform , 2017, ArXiv.

[18]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[19]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[20]  Yasuhiro Tokura Spintronics: Electric spin orchestra , 2009 .

[21]  Gian Giacomo Guerreschi,et al.  Two-step approach to scheduling quantum circuits , 2018, Quantum Science and Technology.

[22]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[23]  N. V. Vitanov,et al.  Time-efficient implementation of quantum search with qudits , 2012, 1209.4489.

[24]  Jr.,et al.  Multivalued logic gates for quantum computation , 2000, quant-ph/0002033.

[25]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[26]  J. Christopher Beck,et al.  Comparing and Integrating Constraint Programming and Temporal Planning for Quantum Circuit Compilation , 2018, ICAPS.

[27]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[28]  A. Yu. Chernyavskiy,et al.  Parallel Computational Structure of Noisy Quantum Circuits Simulation , 2018 .

[29]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[30]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[31]  Stefan Frehse,et al.  RevKit: An Open Source Toolkit for the Design of Reversible Circuits , 2011, RC.

[32]  L. B. Kristensen,et al.  Realization of efficient quantum gates with a superconducting qubit-qutrit circuit , 2018, Scientific Reports.

[33]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[34]  Markus Grassl,et al.  Quantum Error-Correcting Codes for Qudit Amplitude Damping , 2015, IEEE Transactions on Information Theory.

[35]  Margaret Martonosi,et al.  Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures , 2018, 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[36]  Margaret Martonosi,et al.  Optimized Surface Code Communication in Superconducting Quantum Computers , 2017, 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[37]  Eric Dennis Toward fault-tolerant quantum computation without concatenation , 2001 .

[38]  Mozammel H. A. Khan,et al.  Quantum ternary parallel adder/subtractor with partially-look-ahead carry , 2007, J. Syst. Archit..

[39]  T. Jennewein,et al.  Quantum computing using shortcuts through higher dimensions , 2008 .

[40]  J. Whitfield,et al.  Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.

[41]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[42]  Michel Devoret,et al.  Quantum Machines: Measurement and Control of Engineered Quantum Systems: Lecture Notes of the Les Houches Summer School: Volume 96, July 2011 , 2014 .

[43]  Martin Rötteler,et al.  Factoring with Qutrits: Shor's Algorithm on Ternary and Metaplectic Quantum Architectures , 2016, ArXiv.

[44]  Hai‐Rui Wei,et al.  Elementary gates for ternary quantum logic circuit , 2011, 1105.5485.

[45]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[46]  Steven M. Girvin,et al.  Circuit QED: Superconducting Qubits Coupled to Microwave Photons , 2015 .

[47]  William J. Zeng,et al.  A Practical Quantum Instruction Set Architecture , 2016, ArXiv.

[48]  Hermann Kampermann,et al.  Propagation of generalized Pauli errors in qudit Clifford circuits , 2018, Physical Review A.

[49]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[50]  Jens Koch,et al.  Random access quantum information processors using multimode circuit quantum electrodynamics , 2017, Nature Communications.

[51]  J. Biamonte,et al.  Tensor Networks in a Nutshell , 2017, 1708.00006.

[52]  Cheng-Zu Li,et al.  Fast quantum search algorithm for databases of arbitrary size and its implementation in a cavity QED , 2011 .

[53]  Ming-Xing Luo,et al.  Decompositions of n-qubit Toffoli Gates with Linear Circuit Complexity , 2017, International Journal of Theoretical Physics.

[54]  Austin G. Fowler,et al.  Understanding the effects of leakage in superconducting quantum-error-detection circuits , 2013, 1306.0925.

[55]  Todd A. Brun,et al.  A C++ library using quantum trajectories to solve quantum master equations , 1997 .

[56]  Jeremy Frank,et al.  Compiling quantum circuits to realistic hardware architectures using temporal planners , 2017, ArXiv.

[57]  S. C. Webster,et al.  Efficient preparation and detection of microwave dressed-state qubits and qutrits with trapped ions , 2014, 1409.1696.

[58]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[59]  Liang Jiang,et al.  Quantum memory with millisecond coherence in circuit QED , 2015, 1508.05882.

[60]  Natalie C. Brown,et al.  Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: 171 Yb + and 174 Yb + , 2018, 1803.02545.

[61]  C. Monroe,et al.  Co-designing a scalable quantum computer with trapped atomic ions , 2016, npj Quantum Information.

[62]  Jens Koch,et al.  Realization of a Λ System with Metastable States of a Capacitively Shunted Fluxonium. , 2017, Physical review letters.

[63]  Martin Rötteler,et al.  Factoring using $2n+2$ qubits with Toffoli based modular multiplication , 2016, Quantum Inf. Comput..

[64]  Chiara Macchiavello,et al.  An artificial neuron implemented on an actual quantum processor , 2018, npj Quantum Information.

[65]  Alexei Y. Arkhipov UNIVERSAL QUANTUM GATES , 2008 .

[66]  S. C. Webster,et al.  Generation of high-fidelity quantum control methods for multilevel systems , 2017, Physical Review A.

[67]  Andrew D Greentree,et al.  Maximizing the Hilbert space for a finite number of distinguishable quantum states. , 2004, Physical review letters.