The Simulated Magnetocaloric Properties for Ni0.5Cu0.25Zn0.25Fe2O4 Nanoferrites

[1]  W. Godfrey,et al.  Process , 1965, Encyclopedic Dictionary of Archaeology.

[2]  M. A. Hamad,et al.  Electrical properties and positron annihilation studies of nano-crystalline CoLaxFe2−xO4 prepared by ceramic method , 2020, Applied Physics A.

[3]  M. A. Hamad,et al.  The dielectric and magnetic properties of RTV-silicon rubber Ni–Cr ferrite composites , 2020 .

[4]  A. H. El-Sayed,et al.  The Enhancement of Thermomagnetic Properties for BaFe12O19 by Trivalent Ion Substitutions , 2019, Journal of Superconductivity and Novel Magnetism.

[5]  A. H. El-Sayed,et al.  Thermomagnetic properties of La0.67Sr0.33MnO3 nanofibers , 2019, The European Physical Journal Plus.

[6]  A. H. El-Sayed,et al.  Tailoring thermomagnetic properties in Pb(Zr0.52Ti0.48)O3–Ni(1−x)ZnxFe2O4 , 2019, Phase Transitions.

[7]  M. Bouazizi,et al.  Magnetocaloric effect study by means of theoretical models and spontaneous magnetization determination in Ni0.4Mg0.3Cu0.3Fe2O4 ferrite , 2019, Materials Research Express.

[8]  A. H. El-Sayed,et al.  Phenomenological Modeling of Magnetocaloric Effect in La0.7SrxMnO3−δ , 2018 .

[9]  A. H. El-Sayed,et al.  Nickle Concentration Effect on Low Magnetic Field Magnetocaloric Properties for Ni2+xMn1−xGe , 2018, Journal of Superconductivity and Novel Magnetism.

[10]  M. A. Hamad,et al.  Electrical properties and positron annihilation studies for LaxCoFe2−xO4 , 2018, Applied Physics A.

[11]  A. H. El-Sayed,et al.  Phenomenological Modeling of Magnetocaloric Effect for Ni58Fe26Ga28 Alloy , 2018 .

[12]  A. H. El-Sayed,et al.  Magnetocaloric Effect in La1−xLixMnO3 , 2018 .

[13]  A. H. El-Sayed,et al.  Strong Correlation Between the Magnetocaloric Properties of Nanotubes of La0.325Pr0.3Ca0.375MnO3 and their Diameters , 2018 .

[14]  T. Anjaneyulu,et al.  Annealing Temperature Dependent Structural and Magnetic Properties of Ni−Cu−Zn Nanoferrites , 2018 .

[15]  M. Bouazizi,et al.  Correlation between magnetocaloric and electrical properties based on phenomenological models in La0.47Pr0.2Pb0.33MnO3 perovskite , 2018 .

[16]  M. A. Hamad,et al.  Large magnetocaloric effect of La0.67Pb0.33Mn1−xCoxO3 in small magnetic field variation , 2017 .

[17]  K. R. Mahmoud,et al.  ESR, thermoelectrical and positron annihilation Doppler broadening studies of CuZnFe 2 O 4 -BaTiO 3 composite , 2017 .

[18]  K. R. Mahmoud,et al.  Strong Correlations Between Positron Annihilation Spectroscopy and ESR for Mn0.1MgxZn0.9−xFe2O4 Ceramics , 2017 .

[19]  A. H. El-Sayed,et al.  Superior values of the initial permeability for electrodeposited Ni–Co–P-BaFe12O19 composite films , 2017 .

[20]  S. Zemni,et al.  Study of Magnetic Entropy Change in Nd0.67Ba0.33Mn0.98Fe0.02O3 by Means of Theoretical Models , 2017 .

[21]  A. Hamad Magnetocaloric properties of La0.666Sr0.373Mn0.943Cu0.018O3 , 2017 .

[22]  A. H. El-Sayed,et al.  Improvement of the thermal properties of a polystyrene via inclusion of barium hexaferrite particles , 2016 .

[23]  M. A. Hamad Magnetocaloric Effect in Fe3.5Co66.5Si12−xGexB18 Ribbons , 2016 .

[24]  A. H. El-Sayed,et al.  Simulation of Wasp-Waisted Magnetic Hysteresis Loop for NiCoP-Coated BaFe12O19–Polystyrene Bilayer Composite Film , 2016 .

[25]  M. Koubaa,et al.  Phenomenological model of the magnetocaloric effect on Nd 0.7 Ca 0.15 Sr 0.15 MnO 3 compound prepared by ball milling method , 2016 .

[26]  A. H. El-Sayed,et al.  Initial Magnetic Permeability of M-Type BaFe12O19-Polystyrene Composite , 2016 .

[27]  A. H. El-Sayed,et al.  Strong coercivity reduction and high initial permeability in NiCoP coated BaFe12O19–polystyrene bilayer composite , 2016 .

[28]  A. H. El-Sayed,et al.  Greatly enhanced magnetic properties of electrodeposited Ni–Co–P–BaFe12O19 composites , 2016 .

[29]  M. A. Hamad Low Magnetic Field Magnetocaloric Effect in Gd5−x$\text {Gd}_{\mathrm {5-}_{x}}$EuxGe4 , 2016 .

[30]  M. A. Hamad Low Magnetic Field Magnetocaloric Effect in Gd 5 − x Eu x Ge 4 , 2016 .

[31]  A. M. Hamad,et al.  Simulated magnetocaloric properties of MnCr2O4 spinel , 2016 .

[32]  A. H. El-Sayed,et al.  Remarkable magnetic enhancement of type-M hexaferrite of barium in polystyrene polymer , 2015 .

[33]  A. H. El-Sayed,et al.  Synthesis and Characterization of Semi-crystalline NiCoP Film , 2015 .

[34]  M. A. Hamad Theoretical Work on Effect of Pressure on Magnetocaloric Properties of $$\hbox {La}_{0.7}\hbox {Ca}_{0.3}\hbox {MnO}_{3}$$La0.7Ca0.3MnO3 , 2015 .

[35]  M. A. Hamad Great Magnetocaloric Effect of La0.27Nd0.4Ca0.33MnO3 , 2015 .

[36]  M. Valente,et al.  Structural characterization, magnetic, magnetocaloric properties and phenomenological model in manganite La0.75 Sr0.1Ca0.15 MnO3 compound , 2015 .

[37]  M. A. Hamad Magnetocaloric Effect in (Pr1−xBix)0.6Sr0.4MnO3 , 2015 .

[38]  M. A. Hamad Magnetocaloric effect in La1-xCexMnO3 , 2015, Journal of Advanced Ceramics.

[39]  M. A. Hamad Effects of Addition of Rare Earth on Magnetocaloric Effect in Fe82Nb2B14 , 2015 .

[40]  M. A. Hamad Monte Carlo Calculations of Magnetic Heat Capacity of La0.7Sr0.3-xMnO3-d , 2015 .

[41]  M. A. Hamad Calculations of the Low-Field Magnetocaloric Effect in Fe4MnSi3Bx , 2015 .

[42]  M. A. Hamad Magnetocaloric effect in La1xCexMnO3 , 2015 .

[43]  M. A. Hamad Lanthanum Concentration Effect of Magnetocaloric Properties in LaxMnO3−δ , 2015 .

[44]  A. Hamad Magnetocaloric effect in Sr2FeMoO6/Ag composites , 2015 .

[45]  M. A. Hamad Giant isothermal entropy change In (111)-oriented PMN–PT thin film , 2014 .

[46]  M. A. Hamad Simulation of Magnetocaloric Properties of Antiperovskite Structural Ga1−XAlXCMn3 , 2014 .

[47]  E. Dhahri,et al.  Structural characterization, magnetic properties and magnetocaloric effects of La0.75Sr0.25Mn1–xCrxO3 (x = 0.15, 0.20, and 0.25) , 2014 .

[48]  M. A. Hamad Magnetocaloric Effect in Sr0.4Ba1.6−xLaxFeMoO6 , 2014 .

[49]  M. A. Hamad Simulation of Magnetocaloric Effect in La0.7Ca0.3MnO3 Ceramics Fabricated by Fast Sintering Process , 2014 .

[50]  M. A. Hamad Magnetocaloric Effect in Half-Metallic Double Perovskite Sr$$_{0.4}$$0.4Ba$$_{1.6-x}$$1.6-xSr$$_{x}$$xFeMoO$$_{6}$$6 , 2013 .

[51]  M. A. Hamad Theoretical investigations on electrocaloric properties of (111)-oriented PbMg1/3Nb2/3O3 single crystal , 2013, Journal of Advanced Ceramics.

[52]  M. A. Hamad Detecting giant electrocaloric properties of ferroelectric SbSI at room temperature , 2013 .

[53]  M. A. Hamad Magnetocaloric effect in La0.7Sr0.3MnO3/Ta2O5 composites , 2013, Journal of Advanced Ceramics.

[54]  M. A. Hamad Theoretical Investigations on Electrocaloric Properties of $$\mathrm{PbZr}_{0.95}\mathrm{Ti}_{0.05}\mathrm{O}_{3}$$PbZr0.95Ti0.05O3 Thin Film , 2013 .

[55]  M. A. Hamad Investigations on electrocaloric properties of ferroelectric Pb(Mg0.067Nb0.133Zr0.8)O3 , 2013 .

[56]  M. A. Hamad Investigations on electrocaloric properties of [111]-oriented 0.955PbZn1/3Nb2/3O3–0.045PbTiO3 single crystals , 2013 .

[57]  M. A. Hamad Theoretical Investigations on Electrocaloric Properties of PbZr 0 . 95 Ti 0 . 05 O 3 Thin Film , 2013 .

[58]  M. A. Hamad Theoretical investigations on electrocaloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 thin film , 2012 .

[59]  S. Cao,et al.  The role of 4f-electron on spin reorientation transition of NdFeO3: A first principle study , 2012 .