The Simulated Magnetocaloric Properties for Ni0.5Cu0.25Zn0.25Fe2O4 Nanoferrites
暂无分享,去创建一个
[1] W. Godfrey,et al. Process , 1965, Encyclopedic Dictionary of Archaeology.
[2] M. A. Hamad,et al. Electrical properties and positron annihilation studies of nano-crystalline CoLaxFe2−xO4 prepared by ceramic method , 2020, Applied Physics A.
[3] M. A. Hamad,et al. The dielectric and magnetic properties of RTV-silicon rubber Ni–Cr ferrite composites , 2020 .
[4] A. H. El-Sayed,et al. The Enhancement of Thermomagnetic Properties for BaFe12O19 by Trivalent Ion Substitutions , 2019, Journal of Superconductivity and Novel Magnetism.
[5] A. H. El-Sayed,et al. Thermomagnetic properties of La0.67Sr0.33MnO3 nanofibers , 2019, The European Physical Journal Plus.
[6] A. H. El-Sayed,et al. Tailoring thermomagnetic properties in Pb(Zr0.52Ti0.48)O3–Ni(1−x)ZnxFe2O4 , 2019, Phase Transitions.
[7] M. Bouazizi,et al. Magnetocaloric effect study by means of theoretical models and spontaneous magnetization determination in Ni0.4Mg0.3Cu0.3Fe2O4 ferrite , 2019, Materials Research Express.
[8] A. H. El-Sayed,et al. Phenomenological Modeling of Magnetocaloric Effect in La0.7SrxMnO3−δ , 2018 .
[9] A. H. El-Sayed,et al. Nickle Concentration Effect on Low Magnetic Field Magnetocaloric Properties for Ni2+xMn1−xGe , 2018, Journal of Superconductivity and Novel Magnetism.
[10] M. A. Hamad,et al. Electrical properties and positron annihilation studies for LaxCoFe2−xO4 , 2018, Applied Physics A.
[11] A. H. El-Sayed,et al. Phenomenological Modeling of Magnetocaloric Effect for Ni58Fe26Ga28 Alloy , 2018 .
[12] A. H. El-Sayed,et al. Magnetocaloric Effect in La1−xLixMnO3 , 2018 .
[13] A. H. El-Sayed,et al. Strong Correlation Between the Magnetocaloric Properties of Nanotubes of La0.325Pr0.3Ca0.375MnO3 and their Diameters , 2018 .
[14] T. Anjaneyulu,et al. Annealing Temperature Dependent Structural and Magnetic Properties of Ni−Cu−Zn Nanoferrites , 2018 .
[15] M. Bouazizi,et al. Correlation between magnetocaloric and electrical properties based on phenomenological models in La0.47Pr0.2Pb0.33MnO3 perovskite , 2018 .
[16] M. A. Hamad,et al. Large magnetocaloric effect of La0.67Pb0.33Mn1−xCoxO3 in small magnetic field variation , 2017 .
[17] K. R. Mahmoud,et al. ESR, thermoelectrical and positron annihilation Doppler broadening studies of CuZnFe 2 O 4 -BaTiO 3 composite , 2017 .
[18] K. R. Mahmoud,et al. Strong Correlations Between Positron Annihilation Spectroscopy and ESR for Mn0.1MgxZn0.9−xFe2O4 Ceramics , 2017 .
[19] A. H. El-Sayed,et al. Superior values of the initial permeability for electrodeposited Ni–Co–P-BaFe12O19 composite films , 2017 .
[20] S. Zemni,et al. Study of Magnetic Entropy Change in Nd0.67Ba0.33Mn0.98Fe0.02O3 by Means of Theoretical Models , 2017 .
[21] A. Hamad. Magnetocaloric properties of La0.666Sr0.373Mn0.943Cu0.018O3 , 2017 .
[22] A. H. El-Sayed,et al. Improvement of the thermal properties of a polystyrene via inclusion of barium hexaferrite particles , 2016 .
[23] M. A. Hamad. Magnetocaloric Effect in Fe3.5Co66.5Si12−xGexB18 Ribbons , 2016 .
[24] A. H. El-Sayed,et al. Simulation of Wasp-Waisted Magnetic Hysteresis Loop for NiCoP-Coated BaFe12O19–Polystyrene Bilayer Composite Film , 2016 .
[25] M. Koubaa,et al. Phenomenological model of the magnetocaloric effect on Nd 0.7 Ca 0.15 Sr 0.15 MnO 3 compound prepared by ball milling method , 2016 .
[26] A. H. El-Sayed,et al. Initial Magnetic Permeability of M-Type BaFe12O19-Polystyrene Composite , 2016 .
[27] A. H. El-Sayed,et al. Strong coercivity reduction and high initial permeability in NiCoP coated BaFe12O19–polystyrene bilayer composite , 2016 .
[28] A. H. El-Sayed,et al. Greatly enhanced magnetic properties of electrodeposited Ni–Co–P–BaFe12O19 composites , 2016 .
[29] M. A. Hamad. Low Magnetic Field Magnetocaloric Effect in Gd5−x$\text {Gd}_{\mathrm {5-}_{x}}$EuxGe4 , 2016 .
[30] M. A. Hamad. Low Magnetic Field Magnetocaloric Effect in Gd 5 − x Eu x Ge 4 , 2016 .
[31] A. M. Hamad,et al. Simulated magnetocaloric properties of MnCr2O4 spinel , 2016 .
[32] A. H. El-Sayed,et al. Remarkable magnetic enhancement of type-M hexaferrite of barium in polystyrene polymer , 2015 .
[33] A. H. El-Sayed,et al. Synthesis and Characterization of Semi-crystalline NiCoP Film , 2015 .
[34] M. A. Hamad. Theoretical Work on Effect of Pressure on Magnetocaloric Properties of $$\hbox {La}_{0.7}\hbox {Ca}_{0.3}\hbox {MnO}_{3}$$La0.7Ca0.3MnO3 , 2015 .
[35] M. A. Hamad. Great Magnetocaloric Effect of La0.27Nd0.4Ca0.33MnO3 , 2015 .
[36] M. Valente,et al. Structural characterization, magnetic, magnetocaloric properties and phenomenological model in manganite La0.75 Sr0.1Ca0.15 MnO3 compound , 2015 .
[37] M. A. Hamad. Magnetocaloric Effect in (Pr1−xBix)0.6Sr0.4MnO3 , 2015 .
[38] M. A. Hamad. Magnetocaloric effect in La1-xCexMnO3 , 2015, Journal of Advanced Ceramics.
[39] M. A. Hamad. Effects of Addition of Rare Earth on Magnetocaloric Effect in Fe82Nb2B14 , 2015 .
[40] M. A. Hamad. Monte Carlo Calculations of Magnetic Heat Capacity of La0.7Sr0.3-xMnO3-d , 2015 .
[41] M. A. Hamad. Calculations of the Low-Field Magnetocaloric Effect in Fe4MnSi3Bx , 2015 .
[42] M. A. Hamad. Magnetocaloric effect in La1xCexMnO3 , 2015 .
[43] M. A. Hamad. Lanthanum Concentration Effect of Magnetocaloric Properties in LaxMnO3−δ , 2015 .
[44] A. Hamad. Magnetocaloric effect in Sr2FeMoO6/Ag composites , 2015 .
[45] M. A. Hamad. Giant isothermal entropy change In (111)-oriented PMN–PT thin film , 2014 .
[46] M. A. Hamad. Simulation of Magnetocaloric Properties of Antiperovskite Structural Ga1−XAlXCMn3 , 2014 .
[47] E. Dhahri,et al. Structural characterization, magnetic properties and magnetocaloric effects of La0.75Sr0.25Mn1–xCrxO3 (x = 0.15, 0.20, and 0.25) , 2014 .
[48] M. A. Hamad. Magnetocaloric Effect in Sr0.4Ba1.6−xLaxFeMoO6 , 2014 .
[49] M. A. Hamad. Simulation of Magnetocaloric Effect in La0.7Ca0.3MnO3 Ceramics Fabricated by Fast Sintering Process , 2014 .
[50] M. A. Hamad. Magnetocaloric Effect in Half-Metallic Double Perovskite Sr$$_{0.4}$$0.4Ba$$_{1.6-x}$$1.6-xSr$$_{x}$$xFeMoO$$_{6}$$6 , 2013 .
[51] M. A. Hamad. Theoretical investigations on electrocaloric properties of (111)-oriented PbMg1/3Nb2/3O3 single crystal , 2013, Journal of Advanced Ceramics.
[52] M. A. Hamad. Detecting giant electrocaloric properties of ferroelectric SbSI at room temperature , 2013 .
[53] M. A. Hamad. Magnetocaloric effect in La0.7Sr0.3MnO3/Ta2O5 composites , 2013, Journal of Advanced Ceramics.
[54] M. A. Hamad. Theoretical Investigations on Electrocaloric Properties of $$\mathrm{PbZr}_{0.95}\mathrm{Ti}_{0.05}\mathrm{O}_{3}$$PbZr0.95Ti0.05O3 Thin Film , 2013 .
[55] M. A. Hamad. Investigations on electrocaloric properties of ferroelectric Pb(Mg0.067Nb0.133Zr0.8)O3 , 2013 .
[56] M. A. Hamad. Investigations on electrocaloric properties of [111]-oriented 0.955PbZn1/3Nb2/3O3–0.045PbTiO3 single crystals , 2013 .
[57] M. A. Hamad. Theoretical Investigations on Electrocaloric Properties of PbZr 0 . 95 Ti 0 . 05 O 3 Thin Film , 2013 .
[58] M. A. Hamad. Theoretical investigations on electrocaloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 thin film , 2012 .
[59] S. Cao,et al. The role of 4f-electron on spin reorientation transition of NdFeO3: A first principle study , 2012 .