Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms

SUMMARY Treatment of infectious diseases becomes more challenging with each passing year. This is especially true for infections caused by the opportunistic pathogen Pseudomonas aeruginosa, with its ability to rapidly develop resistance to multiple classes of antibiotics. Although the import of resistance mechanisms on mobile genetic elements is always a concern, the most difficult challenge we face with P. aeruginosa is its ability to rapidly develop resistance during the course of treating an infection. The chromosomally encoded AmpC cephalosporinase, the outer membrane porin OprD, and the multidrug efflux pumps are particularly relevant to this therapeutic challenge. The discussion presented in this review highlights the clinical significance of these chromosomally encoded resistance mechanisms, as well as the complex mechanisms/pathways by which P. aeruginosa regulates their expression. Although a great deal of knowledge has been gained toward understanding the regulation of AmpC, OprD, and efflux pumps in P. aeruginosa, it is clear that we have much to learn about how this resourceful pathogen coregulates different resistance mechanisms to overcome the antibacterial challenges it faces.

[1]  J. M. García‐Lobo,et al.  First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii. , 2009, Pathologie-biologie.

[2]  C. Pommerenke,et al.  Genomewide Identification of Genetic Determinants of Antimicrobial Drug Resistance in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[3]  P. Nordmann,et al.  Extended-Spectrum Cephalosporinases in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[4]  A. Oliver,et al.  β-Lactam Resistance Response Triggered by Inactivation of a Nonessential Penicillin-Binding Protein , 2009, PLoS pathogens.

[5]  V. Tam,et al.  Impact of AmpC overexpression on outcomes of patients with Pseudomonas aeruginosa bacteremia. , 2009, Diagnostic microbiology and infectious disease.

[6]  P. Nordmann,et al.  Further Identification of CTX-M-2 Extended-Spectrum β-Lactamase in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[7]  Iraida E. Robledo,et al.  Surveillance of Carbapenem-Resistant Pseudomonas aeruginosa Isolates from Puerto Rican Medical Center Hospitals: Dissemination of KPC and IMP-18 β-Lactamases , 2009, Antimicrobial Agents and Chemotherapy.

[8]  K. Turner,et al.  H-NS family members function coordinately in an opportunistic pathogen , 2008, Proceedings of the National Academy of Sciences.

[9]  M. Kaufmann,et al.  Detection of Pseudomonas aeruginosa isolates producing VEB-type extended-spectrum beta-lactamases in the United Kingdom. , 2008, The Journal of antimicrobial chemotherapy.

[10]  M. Galleni,et al.  Role of the Ser-287-Asn Replacement in the Hydrolysis Spectrum Extension of AmpC β-Lactamases in Escherichia coli , 2008, Antimicrobial Agents and Chemotherapy.

[11]  D. Wolter Novel Mechanism of mexEF-oprN Efflux Pump Overexpression in Pseudomonas aeruginosa Without Co-Regulation of oprD Expression , 2008 .

[12]  K. Poole,et al.  MexCD-OprJ Multidrug Efflux System of Pseudomonas aeruginosa: Involvement in Chlorhexidine Resistance and Induction by Membrane-Damaging Agents Dependent upon the AlgU Stress Response Sigma Factor , 2008, Antimicrobial Agents and Chemotherapy.

[13]  L. McIntosh,et al.  The crystal structure of MexR from Pseudomonas aeruginosa in complex with its antirepressor ArmR , 2008, Proceedings of the National Academy of Sciences.

[14]  R. Hancock,et al.  Novel Genetic Determinants of Low-Level Aminoglycoside Resistance in Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[15]  Robert E. W. Hancock,et al.  Complex Ciprofloxacin Resistome Revealed by Screening a Pseudomonas aeruginosa Mutant Library for Altered Susceptibility , 2008, Antimicrobial Agents and Chemotherapy.

[16]  A. Dinner,et al.  The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism , 2008, Proceedings of the National Academy of Sciences.

[17]  N. Hanson,et al.  Role of ampD Homologs in Overproduction of AmpC in Clinical Isolates of Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[18]  R. Hancock,et al.  Mutator Genes Giving Rise to Decreased Antibiotic Susceptibility in Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[19]  A. Oliver,et al.  Benefit of Having Multiple ampD Genes for Acquiring β-Lactam Resistance without Losing Fitness and Virulence in Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[20]  R. Goering,et al.  Emergence of carbapenem resistance in Pseudomonas aeruginosa isolates from a patient with cystic fibrosis in the absence of carbapenem therapy. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[21]  C. van Delden,et al.  Resistance and Virulence of Pseudomonas aeruginosa Clinical Strains Overproducing the MexCD-OprJ Efflux Pump , 2008, Antimicrobial Agents and Chemotherapy.

[22]  P. Nordmann,et al.  Contribution of extended-spectrum AmpC (ESAC) beta-lactamases to carbapenem resistance in Escherichia coli. , 2008, FEMS microbiology letters.

[23]  Ronald N. Jones,et al.  Activity of meropenem as serine carbapenemases evolve in US Medical Centers: monitoring report from the MYSTIC Program (2006). , 2007, Diagnostic microbiology and infectious disease.

[24]  A. Oliver,et al.  Molecular Epidemiology and Mechanisms of Carbapenem Resistance in Pseudomonas aeruginosa Isolates from Spanish Hospitals , 2007, Antimicrobial Agents and Chemotherapy.

[25]  H. Schweizer,et al.  Identification and Characterization of TriABC-OpmH, a Triclosan Efflux Pump of Pseudomonas aeruginosa Requiring Two Membrane Fusion Proteins , 2007, Journal of bacteriology.

[26]  H. Segal,et al.  A Novel Insertion Sequence, ISPa26, in oprD of Pseudomonas aeruginosa Is Associated with Carbapenem Resistance , 2007, Antimicrobial Agents and Chemotherapy.

[27]  D. Landman,et al.  Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY. , 2007, The Journal of antimicrobial chemotherapy.

[28]  M. Page,et al.  Interactions of Ceftobiprole with β-Lactamases from Molecular Classes A to D , 2007, Antimicrobial Agents and Chemotherapy.

[29]  D. Daigle,et al.  Protein Modulator of Multidrug Efflux Gene Expression in Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[30]  N. Hanson,et al.  Increased Expression of ampC in Pseudomonas aeruginosa Mutants Selected with Ciprofloxacin , 2007, Antimicrobial Agents and Chemotherapy.

[31]  K. Perron,et al.  A Copper-Activated Two-Component System Interacts with Zinc and Imipenem Resistance in Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[32]  Ronald N. Jones,et al.  Contemporary activity of meropenem and comparator broad-spectrum agents: MYSTIC program report from the United States component (2005). , 2007, Diagnostic microbiology and infectious disease.

[33]  J. Quinn,et al.  First Identification of Pseudomonas aeruginosa Isolates Producing a KPC-Type Carbapenem-Hydrolyzing β-Lactamase , 2007, Antimicrobial Agents and Chemotherapy.

[34]  M. Page,et al.  Interactions of ceftobiprole with beta-lactamases from molecular classes A to D. , 2007, Antimicrobial agents and chemotherapy.

[35]  D. Paterson,et al.  Coproduction of Novel 16S rRNA Methylase RmtD and Metallo-β-Lactamase SPM-1 in a Panresistant Pseudomonas aeruginosa Isolate from Brazil , 2006, Antimicrobial Agents and Chemotherapy.

[36]  K. Poole,et al.  nalD Encodes a Second Repressor of the mexAB-oprM Multidrug Efflux Operon of Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[37]  A. Robicsek,et al.  Prevalence in the United States of aac(6′)-Ib-cr Encoding a Ciprofloxacin-Modifying Enzyme , 2006, Antimicrobial Agents and Chemotherapy.

[38]  Neil Woodford,et al.  The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter , 2006 .

[39]  Y. Ike,et al.  Mode of Transposition and Expression of 16S rRNA Methyltransferase Gene rmtC Accompanied by ISEcp1 , 2006, Antimicrobial Agents and Chemotherapy.

[40]  A. Robicsek,et al.  qnr Prevalence in Ceftazidime-Resistant Enterobacteriaceae Isolates from the United States , 2006, Antimicrobial Agents and Chemotherapy.

[41]  L. Piddock Multidrug-resistance efflux pumps ? not just for resistance , 2006, Nature Reviews Microbiology.

[42]  N. Hanson,et al.  Model System To Evaluate the Effect of ampD Mutations on AmpC-Mediated β-Lactam Resistance , 2006, Antimicrobial Agents and Chemotherapy.

[43]  W. Bilker,et al.  Fluoroquinolone-resistant Pseudomonas aeruginosa: assessment of risk factors and clinical impact. , 2006, The American journal of medicine.

[44]  A. Oliver,et al.  Stepwise Upregulation of the Pseudomonas aeruginosa Chromosomal Cephalosporinase Conferring High-Level β-Lactam Resistance Involves Three AmpD Homologues , 2006, Antimicrobial Agents and Chemotherapy.

[45]  D. Wolter,et al.  Levofloxacin/imipenem prevents the emergence of high-level resistance among Pseudomonas aeruginosa strains already lacking susceptibility to one or both drugs. , 2006, The Journal of antimicrobial chemotherapy.

[46]  K. Tanimoto,et al.  Potency of Carbapenems for the Prevention of Carbapenem-Resistant Mutants of Pseudomonas aeruginosa , 2006, The Journal of Antibiotics.

[47]  Didier Hocquet,et al.  Involvement of the MexXY-OprM Efflux System in Emergence of Cefepime Resistance in Clinical Strains of Pseudomonas aeruginosa , 2006, Antimicrobial Agents and Chemotherapy.

[48]  K. Poole,et al.  Antibiotic Inducibility of the MexXY Multidrug Efflux System of Pseudomonas aeruginosa: Involvement of the Antibiotic-Inducible PA5471 Gene Product , 2006, Journal of bacteriology.

[49]  J. Colmer-Hamood,et al.  mvaT mutation modifies the expression of the Pseudomonas aeruginosa multidrug efflux operon mexEF-oprN. , 2006, FEMS microbiology letters.

[50]  Y. Ike,et al.  Novel Plasmid-Mediated 16S rRNA Methylase, RmtC, Found in a Proteus mirabilis Isolate Demonstrating Extraordinary High-Level Resistance against Various Aminoglycosides , 2006, Antimicrobial Agents and Chemotherapy.

[51]  Yehuda Carmeli,et al.  Multidrug-Resistant Pseudomonas aeruginosa: Risk Factors and Clinical Impact , 2006, Antimicrobial Agents and Chemotherapy.

[52]  N. Woodford,et al.  The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. , 2006, Trends in microbiology.

[53]  Marin H Kollef,et al.  Epidemiology and outcomes of health-care-associated pneumonia: results from a large US database of culture-positive pneumonia. , 2005, Chest.

[54]  C. Koh,et al.  Pseudomonas aeruginosa AmpR Is a Global Transcriptional Factor That Regulates Expression of AmpC and PoxB β-Lactamases, Proteases, Quorum Sensing, and Other Virulence Factors , 2005, Antimicrobial Agents and Chemotherapy.

[55]  M. Maciá,et al.  Molecular Mechanisms of β-Lactam Resistance Mediated by AmpC Hyperproduction in Pseudomonas aeruginosa Clinical Strains , 2005, Antimicrobial Agents and Chemotherapy.

[56]  T. Tsuchiya,et al.  Gene Cloning and Properties of the RND‐Type Multidrug Efflux Pumps MexPQ‐OpmE and MexMN‐OprM from Pseudomonas aeruginosa , 2005, Microbiology and immunology.

[57]  N. Hanson,et al.  AmpC and OprD Are Not Involved in the Mechanism of Imipenem Hypersusceptibility among Pseudomonas aeruginosa Isolates Overexpressing the mexCD-oprJ Efflux Pump , 2005, Antimicrobial Agents and Chemotherapy.

[58]  Jonathan R Edwards,et al.  Overview of nosocomial infections caused by gram-negative bacilli. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[59]  H. Schweizer,et al.  Molecular Basis of Azithromycin-Resistant Pseudomonas aeruginosa Biofilms , 2005, Antimicrobial Agents and Chemotherapy.

[60]  L. Domínguez,et al.  Genetic basis for dissemination of armA. , 2005, The Journal of antimicrobial chemotherapy.

[61]  Ronald N. Jones,et al.  Emerging metallo-beta-lactamase-mediated resistances: a summary report from the worldwide SENTRY antimicrobial surveillance program. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[62]  K. Poole,et al.  Induction of the MexXY Efflux Pump in Pseudomonas aeruginosa Is Dependent on Drug-Ribosome Interaction , 2005, Journal of bacteriology.

[63]  P. Courvalin,et al.  Worldwide Disseminated armA Aminoglycoside Resistance Methylase Gene Is Borne by Composite Transposon Tn1548 , 2005, Antimicrobial Agents and Chemotherapy.

[64]  P. Nordmann,et al.  Association of Plasmid-Mediated Quinolone Resistance with Extended-Spectrum β-Lactamase VEB-1 , 2005, Antimicrobial Agents and Chemotherapy.

[65]  Y. Arakawa,et al.  Global Spread of Multiple Aminoglycoside Resistance Genes , 2005, Emerging infectious diseases.

[66]  Steven D. Brown,et al.  Comparative in vitro antimicrobial activity of a new carbapenem, doripenem: tentative disc diffusion criteria and quality control. , 2005, The Journal of antimicrobial chemotherapy.

[67]  K. Poole,et al.  Mutations in PA3574 (nalD) Lead to Increased MexAB-OprM Expression and Multidrug Resistance in Laboratory and Clinical Isolates of Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[68]  H. Schweizer,et al.  Substrate-Dependent Utilization of OprM or OpmH by the Pseudomonas aeruginosa MexJK Efflux Pump , 2005, Antimicrobial Agents and Chemotherapy.

[69]  H. Schweizer,et al.  Molecular Characterization of MexL, the Transcriptional Repressor of the mexJK Multidrug Efflux Operon in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[70]  F. Campagne,et al.  Pseudomonas aeruginosa SoxR Does Not Conform to the Archetypal Paradigm for SoxR-Dependent Regulation of the Bacterial Oxidative Stress Adaptive Response , 2005, Infection and Immunity.

[71]  Bong Su Kim,et al.  Alterations in the GyrA and GyrB subunits of topoisomerase II and the ParC and ParE subunits of topoisomerase IV in ciprofloxacin-resistant clinical isolates of Pseudomonas aeruginosa. , 2005, International journal of antimicrobial agents.

[72]  S. Diggle,et al.  The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. , 2005, Microbiology.

[73]  M. Kollef,et al.  Pseudomonas aeruginosa Bloodstream Infection: Importance of Appropriate Initial Antimicrobial Treatment , 2005, Antimicrobial Agents and Chemotherapy.

[74]  C. Giske,et al.  Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates , 2005, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[75]  K. Poole,et al.  Mutations in PA2491 (mexS) Promote MexT-Dependent mexEF-oprN Expression and Multidrug Resistance in a Clinical Strain of Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[76]  Ronald N. Jones,et al.  Emerging epidemic of metallo-β-lactamase-mediated resistances , 2005 .

[77]  K. Poole Aminoglycoside Resistance in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[78]  R. Spencer Predominant pathogens found in the European prevalence of infection in intensive care study , 1996, European Journal of Clinical Microbiology and Infectious Diseases.

[79]  R. Cisterna,et al.  Emergence of resistance to beta-lactam agents inPseudomonas aeruginosa with group I beta-lactamases in Spain , 1995, European Journal of Clinical Microbiology and Infectious Diseases.

[80]  Ronald N. Jones,et al.  Emerging epidemic of metallo-beta-lactamase-mediated resistances. , 2005, Diagnostic microbiology and infectious disease.

[81]  R. MacLaren,et al.  National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa Isolates Obtained from Intensive Care Unit Patients from 1993 to 2002 , 2004, Antimicrobial Agents and Chemotherapy.

[82]  Ronald N. Jones,et al.  Molecular Characterization of a β-Lactamase Gene, blaGIM-1, Encoding a New Subclass of Metallo-β-Lactamase , 2004, Antimicrobial Agents and Chemotherapy.

[83]  B. Wretlind,et al.  Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa. , 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[84]  K. Poole,et al.  MexAB‐OprM hyperexpression in NalC‐type multidrug‐resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720‐PA3719 , 2004, Molecular microbiology.

[85]  A. Peleg,et al.  Emergence of IMP-4 metallo-β-lactamase in a clinical isolate from Australia , 2004 .

[86]  R. Goering,et al.  Multidrug resistance associated with mexXY expression in clinical isolates of Pseudomonas aeruginosa from a Texas hospital. , 2004, Diagnostic microbiology and infectious disease.

[87]  D. Yong,et al.  Metallo-beta-lactamase-producing Gram-negative bacilli in Korean Nationwide Surveillance of Antimicrobial Resistance group hospitals in 2003: continued prevalence of VIM-producing Pseudomonas spp. and increase of IMP-producing Acinetobacter spp. , 2004, Diagnostic microbiology and infectious disease.

[88]  T. Nakae,et al.  MexZ-mediated regulation of mexXY multidrug efflux pump expression in Pseudomonas aeruginosa by binding on the mexZ-mexX intergenic DNA. , 2004, FEMS microbiology letters.

[89]  D. Livermore,et al.  Doripenem versus Pseudomonas aeruginosa In Vitro: Activity against Characterized Isolates, Mutants, and Transconjugants and Resistance Selection Potential , 2004, Antimicrobial Agents and Chemotherapy.

[90]  R. Wenzel,et al.  Annals of Clinical Microbiology and Antimicrobials Open Access Emerging Resistance among Bacterial Pathogens in the Intensive Care Unit – a European and North American Surveillance Study (2000–2002) Intensive-care Unitantibiotic Susceptibility , 2022 .

[91]  J. Rello,et al.  Patterns of colonization by Pseudomonas aeruginosa in intubated patients: a 3-year prospective study of 1,607 isolates using pulsed-field gel electrophoresis with implications for prevention of ventilator-associated pneumonia , 2004, Intensive Care Medicine.

[92]  N. Hanson,et al.  Insertional inactivation ofoprD in clinical isolates ofPseudomonas aeruginosaleading to carbapenem resistance , 2004 .

[93]  N. Hanson,et al.  Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. , 2004, FEMS microbiology letters.

[94]  J. Karlowsky,et al.  Factors Associated with Relative Rates of Antibiotic Resistance in Pseudomonas aeruginosa Isolates Tested in Clinical Laboratories in the United States from 1999 to 2002 , 2004, Antimicrobial Agents and Chemotherapy.

[95]  P. Nordmann,et al.  Biochemical Characterization of the Naturally Occurring Oxacillinase OXA-50 of Pseudomonas aeruginosa , 2004, Antimicrobial Agents and Chemotherapy.

[96]  M. Akçay,et al.  Changes of microbial flora and wound colonization in burned patients. , 2004, Burns : journal of the International Society for Burn Injuries.

[97]  Ronald N. Jones,et al.  Emergence of the Extended-Spectrum β-Lactamase GES-1 in a Pseudomonas aeruginosa Strain from Brazil: Report from the SENTRY Antimicrobial Surveillance Program , 2004, Antimicrobial Agents and Chemotherapy.

[98]  K. Yokoyama,et al.  Genetic Environments of the rmtA Gene in Pseudomonas aeruginosa Clinical Isolates , 2004, Antimicrobial Agents and Chemotherapy.

[99]  T. Nakae,et al.  A Quorum‐Sensing Autoinducer Enhances the mexAB‐oprM Efflux‐Pump Expression without the MexR‐Mediated Regulation in Pseudomonas aeruginosa , 2004, Microbiology and immunology.

[100]  S. Diggle,et al.  Biofilm Formation in Pseudomonas aeruginosa: Fimbrial cup Gene Clusters Are Controlled by the Transcriptional Regulator MvaT , 2004, Journal of bacteriology.

[101]  D. Hocquet,et al.  Clinical Strains of Pseudomonas aeruginosa Overproducing MexAB-OprM and MexXY Efflux Pumps Simultaneously , 2004, Antimicrobial Agents and Chemotherapy.

[102]  C. Bailly,et al.  Role of the Multidrug Efflux System MexXY in the Emergence of Moderate Resistance to Aminoglycosides among Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis , 2004, Antimicrobial Agents and Chemotherapy.

[103]  T. Nakae,et al.  Enhancement of the mexAB-oprM Efflux Pump Expression by a Quorum-Sensing Autoinducer and Its Cancellation by a Regulator, MexT, of the mexEF-oprN Efflux Pump Operon in Pseudomonas aeruginosa , 2004, Antimicrobial Agents and Chemotherapy.

[104]  C. van Delden,et al.  CzcR-CzcS, a Two-component System Involved in Heavy Metal and Carbapenem Resistance in Pseudomonas aeruginosa* , 2004, Journal of Biological Chemistry.

[105]  P. Nordmann,et al.  Resistance to Cefepime and Cefpirome Due to a 4-Amino-Acid Deletion in the Chromosome-Encoded AmpC β-Lactamase of a Serratia marcescens Clinical Isolate , 2004, Antimicrobial Agents and Chemotherapy.

[106]  P. Bennett,et al.  Role of the 'cre/blr-tag' DNA sequence in regulation of gene expression by the Aeromonas hydrophila beta-lactamase regulator, BlrA. , 2004, The Journal of antimicrobial chemotherapy.

[107]  K. Yokoyama,et al.  Plasmid-Mediated 16S rRNA Methylase in Serratia marcescens Conferring High-Level Resistance to Aminoglycosides , 2004, Antimicrobial Agents and Chemotherapy.

[108]  T. Grundström,et al.  Initiation of translation makes attenuation of ampC in E. coli dependent on growth rate , 2004, Molecular and General Genetics MGG.

[109]  N. Caroff,et al.  Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing beta-lactam resistance. , 2004, FEMS microbiology letters.

[110]  A. Peleg,et al.  Emergence of IMP-4 metallo-beta-lactamase in a clinical isolate from Australia. , 2004, The Journal of antimicrobial chemotherapy.

[111]  National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. , 2004, American journal of infection control.

[112]  K. Yokoyama,et al.  Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa , 2003, The Lancet.

[113]  K. Itoh,et al.  Significance of Pseudomonas aeruginosa colonization of the gastrointestinal tract. , 2003, Internal medicine.

[114]  T. Nakae,et al.  Mutations Affecting DNA-Binding Activity of the MexR Repressor of mexR-mexA-mexB-oprM Operon Expression , 2003, Journal of bacteriology.

[115]  A. Gales,et al.  Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-beta-lactamase. , 2003, The Journal of antimicrobial chemotherapy.

[116]  K. Poole,et al.  Contribution of the MexXY Multidrug Transporter to Aminoglycoside Resistance in Pseudomonas aeruginosa Clinical Isolates , 2003, Antimicrobial Agents and Chemotherapy.

[117]  Y. Li,et al.  A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. , 2003, The Journal of antimicrobial chemotherapy.

[118]  T. Tsuchiya,et al.  Functional Cloning and Characterization of a Multidrug Efflux Pump, MexHI-OpmD, from a Pseudomonas aeruginosa Mutant , 2003, Antimicrobial Agents and Chemotherapy.

[119]  P. Courvalin,et al.  Plasmid-Mediated High-Level Resistance to Aminoglycosides in Enterobacteriaceae Due to 16S rRNA Methylation , 2003, Antimicrobial Agents and Chemotherapy.

[120]  P. Nordmann,et al.  Ambler Class A Extended-Spectrum β-Lactamases in Pseudomonas aeruginosa: Novel Developments and Clinical Impact , 2003, Antimicrobial Agents and Chemotherapy.

[121]  P. Bennett,et al.  Genetic linkage of the penicillinase gene, amp, and blrAB, encoding the regulator of beta-lactamase expression in Aeromonas spp. , 2003, The Journal of antimicrobial chemotherapy.

[122]  J. Karlowsky,et al.  Surveillance for Antimicrobial Susceptibility among Clinical Isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from Hospitalized Patients in the United States, 1998 to 2001 , 2003, Antimicrobial Agents and Chemotherapy.

[123]  J. Lucet,et al.  Epidemiology of Pseudomonas aeruginosa and risk factors for carriage acquisition in an intensive care unit. , 2003, The Journal of hospital infection.

[124]  H. Schweizer Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. , 2003, Genetics and molecular research : GMR.

[125]  C. Dean,et al.  Efflux-Mediated Resistance to Tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1 , 2003, Antimicrobial Agents and Chemotherapy.

[126]  G. Jacoby,et al.  Prevalence of Plasmid-Mediated Quinolone Resistance , 2003, Antimicrobial Agents and Chemotherapy.

[127]  D. Livermore The threat from the pink corner , 2003, Annals of medicine.

[128]  H. Oh,et al.  Role of efflux pumps and mutations in genes for topoisomerases II and IV in fluoroquinolone-resistant Pseudomonas aeruginosa strains. , 2003, Microbial drug resistance.

[129]  A. Lepape [Epidemiology of infections due to Pseudomonas aeruginosa]. , 2003, Annales francaises d'anesthesie et de reanimation.

[130]  D. Wolter,et al.  Levofloxacin-imipenem combination prevents the emergence of resistance among clinical isolates of Pseudomonas aeruginosa. , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[131]  A. Vanderkelen,et al.  Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates. , 2002, Environmental microbiology.

[132]  James T. Park,et al.  Substrate Specificity of the AmpG Permease Required for Recycling of Cell Wall Anhydro-Muropeptides , 2002, Journal of bacteriology.

[133]  M. Hentzer,et al.  Constitutive High Expression of Chromosomal β-Lactamase in Pseudomonas aeruginosa Caused by a New Insertion Sequence (IS1669) Located in ampD , 2002, Antimicrobial Agents and Chemotherapy.

[134]  T. Murata,et al.  Characterization of outer membrane efflux proteins OpmE, OpmD and OpmB of Pseudomonas aeruginosa: molecular cloning and development of specific antisera. , 2002, FEMS microbiology letters.

[135]  Ronald N. Jones,et al.  Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. , 2002, The Journal of antimicrobial chemotherapy.

[136]  H. Schweizer,et al.  The MexJK Efflux Pump of Pseudomonas aeruginosa Requires OprM for Antibiotic Efflux but Not for Efflux of Triclosan , 2002, Journal of bacteriology.

[137]  P. Cornelis,et al.  Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. , 2002, Microbiology.

[138]  K. Poole,et al.  The MexR Repressor of the mexAB-oprM Multidrug Efflux Operon in Pseudomonas aeruginosa: Characterization of Mutations Compromising Activity , 2002, Journal of bacteriology.

[139]  C. Branger,et al.  Identification of PSE and OXA beta-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. , 2002, The Journal of antimicrobial chemotherapy.

[140]  H. Ohge,et al.  Changes in the Intestinal Flora After the Administration of Prophylactic Antibiotics to Patients Undergoing a Gastrectomy , 2002, Surgery Today.

[141]  P. Nordmann,et al.  Emerging carbapenemases in Gram-negative aerobes. , 2002, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[142]  K. Poole Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. , 2002, Current pharmaceutical biotechnology.

[143]  D. Livermore,et al.  Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[144]  Robert E W Hancock,et al.  Function of pseudomonas porins in uptake and efflux. , 2002, Annual review of microbiology.

[145]  A. Evangelista,et al.  Susceptibility to fluoroquinolones among commonly isolated Gram-negative bacilli in 2000: TRUST and TSN data for the United States. Tracking Resistance in the United States Today. The Surveillance Network. , 2002, International journal of antimicrobial agents.

[146]  V. Miriagou,et al.  An integron-associated β-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum β-lactamase IBC-1 , 2001 .

[147]  C. van Delden,et al.  Overexpression of the MexEF-OprN Multidrug Efflux System Affects Cell-to-Cell Signaling in Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[148]  T. Tsuchiya,et al.  Construction of a series of mutants lacking all of the four major mex operons for multidrug efflux pumps or possessing each one of the operons from Pseudomonas aeruginosa PAO1: MexCD-OprJ is an inducible pump. , 2001, FEMS microbiology letters.

[149]  A. Yamaguchi,et al.  Type II Topoisomerase Mutations in Fluoroquinolone-Resistant Clinical Strains of Pseudomonas aeruginosa Isolated in 1998 and 1999: Role of Target Enzyme in Mechanism of Fluoroquinolone Resistance , 2001, Antimicrobial Agents and Chemotherapy.

[150]  H. Ceri,et al.  Multidrug Efflux Pumps: Expression Patterns and Contribution to Antibiotic Resistance in Pseudomonas aeruginosa Biofilms , 2001, Antimicrobial Agents and Chemotherapy.

[151]  K. Poole,et al.  Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. , 2001, Current topics in medicinal chemistry.

[152]  P. Nordmann,et al.  VEB-1-like extended-spectrum beta-lactamases in Pseudomonas aeruginosa, Kuwait. , 2001, Emerging infectious diseases.

[153]  N. Masuda,et al.  Hypersusceptibility of the Pseudomonas aeruginosa nfxB Mutant to β-Lactams Due to Reduced Expression of the AmpC β-Lactamase , 2001, Antimicrobial Agents and Chemotherapy.

[154]  K. Poole,et al.  MexR Repressor of the mexAB-oprMMultidrug Efflux Operon of Pseudomonas aeruginosa: Identification of MexR Binding Sites in the mexA-mexRIntergenic Region , 2001, Journal of bacteriology.

[155]  T. Nakae,et al.  Molecular mechanism of MexR-mediated regulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. , 2001, FEMS microbiology letters.

[156]  G. Barnaud,et al.  Extension of resistance to cefepime and cefpirome associated to a six amino acid deletion in the H-10 helix of the cephalosporinase of an Enterobacter cloacae clinical isolate. , 2001, FEMS microbiology letters.

[157]  N. Gotoh,et al.  Carbapenem Resistance Mechanisms in Pseudomonas aeruginosa Clinical Isolates , 2001, Antimicrobial Agents and Chemotherapy.

[158]  N. Masuda,et al.  Hypersusceptibility of the Pseudomonas aeruginosa nfxB mutant to beta-lactams due to reduced expression of the ampC beta-lactamase. , 2001, Antimicrobial agents and chemotherapy.

[159]  V. Miriagou,et al.  An integron-associated beta-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum beta-lactamase IBC-1. , 2001, The Journal of antimicrobial chemotherapy.

[160]  T. Tsuchiya,et al.  Roles of MexXY- and MexAB-multidrug efflux pumps in intrinsic multidrug resistance of Pseudomonas aeruginosa PAO1. , 2001, The Journal of general and applied microbiology.

[161]  X. Li,et al.  Influence of the MexA-MexB-oprM multidrug efflux system on expression of the MexC-MexD-oprJ and MexE-MexF-oprN multidrug efflux systems in Pseudomonas aeruginosa. , 2000, The Journal of antimicrobial chemotherapy.

[162]  T. Nakae,et al.  Variation of the mexT gene, a regulator of the MexEF-oprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. , 2000, FEMS microbiology letters.

[163]  N. Woodford,et al.  Carbapenemases: a problem in waiting? , 2000, Current opinion in microbiology.

[164]  L. Piddock,et al.  Two Efflux Systems Expressed Simultaneously in Multidrug-Resistant Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[165]  N. Masuda,et al.  Contribution of the MexX-MexY-OprM Efflux System to Intrinsic Resistance in Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[166]  K. Poole Efflux-Mediated Resistance to Fluoroquinolones in Gram-Negative Bacteria , 2000, Antimicrobial Agents and Chemotherapy.

[167]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[168]  E. Balzi,et al.  Antibiotic efflux pumps. , 2000, Biochemical pharmacology.

[169]  D. Hooper,et al.  Mechanisms of action and resistance of older and newer fluoroquinolones. , 2000, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[170]  K. Poole,et al.  Influence of Mutations in the mexR Repressor Gene on Expression of the MexA-MexB-OprM Multidrug Efflux System ofPseudomonas aeruginosa , 2000, Journal of bacteriology.

[171]  A. Huletsky,et al.  Inactivation of the ampD Gene inPseudomonas aeruginosa Leads to Moderate-Basal-Level and Hyperinducible AmpC β-Lactamase Expression , 2000, Antimicrobial Agents and Chemotherapy.

[172]  N. Høiby,et al.  Molecular Mechanisms of Fluoroquinolone Resistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients , 2000, Antimicrobial Agents and Chemotherapy.

[173]  M. Inoue,et al.  ampR Gene Mutations That Greatly Increase Class C β-Lactamase Activity in Enterobacter cloacae , 2000, Antimicrobial Agents and Chemotherapy.

[174]  E. Janas,et al.  Role of Penicillin-Binding Proteins in the Initiation of the , 1999 .

[175]  Nnis System,et al.  National Nosocomial Infections Surveillance (NNIS) System Report, Data Summary from January 1990-May 1999, issued June 1999. A report from the NNIS System. , 1999, American journal of infection control.

[176]  D. Sherman,et al.  Characterization of a Pseudomonas aeruginosa Efflux Pump Contributing to Aminoglycoside Impermeability , 1999, Antimicrobial Agents and Chemotherapy.

[177]  N. Hanson,et al.  Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. , 1999, Current pharmaceutical design.

[178]  P. Nordmann,et al.  OXA-type beta-lactamases. , 1999, Current pharmaceutical design.

[179]  H. Nikaido,et al.  Involvement of an Active Efflux System in the Natural Resistance of Pseudomonas aeruginosa to Aminoglycosides , 1999, Antimicrobial Agents and Chemotherapy.

[180]  T. Köhler,et al.  Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[181]  R. Hancock,et al.  Amino Acid-Mediated Induction of the Basic Amino Acid-Specific Outer Membrane Porin OprD from Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[182]  Y. Carmeli,et al.  Health and economic outcomes of antibiotic resistance in Pseudomonas aeruginosa. , 1999, Archives of internal medicine.

[183]  R. Gaynes,et al.  Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. , 1999, Critical care medicine.

[184]  R. Hancock,et al.  Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.

[185]  R. Gaynes,et al.  Nosocomial Infections in Pediatric Intensive Care Units in the United States , 1999, Pediatrics.

[186]  K. Poole,et al.  The MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa is growth-phase regulated. , 1999, FEMS microbiology letters.

[187]  C. Sanders,et al.  Clavulanate Induces Expression of the Pseudomonas aeruginosa AmpC Cephalosporinase at Physiologically Relevant Concentrations and Antagonizes the Antibacterial Activity of Ticarcillin , 1999, Antimicrobial Agents and Chemotherapy.

[188]  N. Masuda,et al.  Interplay between Chromosomal β-Lactamase and the MexAB-OprM Efflux System in Intrinsic Resistance to β-Lactams inPseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[189]  T. Takenouchi,et al.  Detection of gyrA Mutations among 335Pseudomonas aeruginosa Strains Isolated in Japan and Their Susceptibilities to Fluoroquinolones , 1999, Antimicrobial Agents and Chemotherapy.

[190]  T. Köhler,et al.  Carbapenem Activities against Pseudomonas aeruginosa: Respective Contributions of OprD and Efflux Systems , 1999, Antimicrobial Agents and Chemotherapy.

[191]  T. Tsuchiya,et al.  Expression in Escherichia coli of a New Multidrug Efflux Pump, MexXY, from Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[192]  V. Jarlier,et al.  Type II Topoisomerase Mutations in Ciprofloxacin-Resistant Strains of Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[193]  M. Bonten,et al.  Characteristics of polyclonal endemicity of Pseudomonas aeruginosa colonization in intensive care units. Implications for infection control. , 1999, American journal of respiratory and critical care medicine.

[194]  N. Masuda,et al.  Interplay between chromosomal beta-lactamase and the MexAB-OprM efflux system in intrinsic resistance to beta-lactams in Pseudomonas aeruginosa. , 1999, Antimicrobial Agents and Chemotherapy.

[195]  A. Huletsky,et al.  An ampD Gene in Pseudomonas aeruginosa Encodes a Negative Regulator of AmpC β-Lactamase Expression , 1998, Antimicrobial Agents and Chemotherapy.

[196]  B. Iglewski,et al.  Cell-to-cell signaling and Pseudomonas aeruginosa infections. , 1998, Emerging infectious diseases.

[197]  R. T. Villavicencio The history of blue pus. , 1998, Journal of the American College of Surgeons.

[198]  M. Tsuda,et al.  Characterization of the MexC-MexD-OprJ Multidrug Efflux System in ΔmexA-mexB-oprM Mutants of Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.

[199]  R. Hancock Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[200]  K. Poole,et al.  Contribution of Outer Membrane Efflux Protein OprM to Antibiotic Resistance in Pseudomonas aeruginosa Independent of MexAB , 1998, Antimicrobial Agents and Chemotherapy.

[201]  Jacques Bille,et al.  Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study. , 1998, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[202]  I. Paulsen,et al.  Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[203]  J. Höltje,et al.  Growth of the Stress-Bearing and Shape-Maintaining Murein Sacculus of Escherichia coli , 1998, Microbiology and Molecular Biology Reviews.

[204]  K. Poole,et al.  β-Lactamase Inhibitors Are Substrates for the Multidrug Efflux Pumps of Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.

[205]  K. Poole,et al.  Expression of Pseudomonas aeruginosa Multidrug Efflux Pumps MexA-MexB-OprM and MexC-MexD-OprJ in a Multidrug-Sensitive Escherichia coli Strain , 1998, Antimicrobial Agents and Chemotherapy.

[206]  S. Miyazaki,et al.  In Vitro and In Vivo Antibacterial Activities of S-4661, a New Carbapenem , 1998, Antimicrobial Agents and Chemotherapy.

[207]  S. Mitsuhashi,et al.  Sequences of Homologous β-Lactamases from Clinical Isolates of Serratia marcescens with Different Substrate Specificities , 1998, Antimicrobial Agents and Chemotherapy.

[208]  National Nosocomial Infections Surveillance (NNIS) System report, data summary from October 1986-April 1998, issued June 1998. , 1998, American journal of infection control.

[209]  B. Wretlind,et al.  Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. , 1998, Microbial drug resistance.

[210]  X. Li,et al.  Inner membrane efflux components are responsible for beta-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[211]  B. Wiedemann,et al.  The signal molecule for beta-lactamase induction in Enterobacter cloacae is the anhydromuramyl-pentapeptide , 1997, Antimicrobial agents and chemotherapy.

[212]  P. Nordmann,et al.  OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.

[213]  K. Bush,et al.  Penicillin-binding proteins and induction of AmpC beta-lactamase , 1997, Antimicrobial agents and chemotherapy.

[214]  N. Høiby,et al.  Pseudomonas aeruginosa isolates from patients with cystic fibrosis have different beta-lactamase expression phenotypes but are homogeneous in the ampC-ampR genetic region , 1997, Antimicrobial agents and chemotherapy.

[215]  J. Frère,et al.  Cytosolic Intermediates for Cell Wall Biosynthesis and Degradation Control Inducible β-Lactam Resistance in Gram-Negative Bacteria , 1997, Cell.

[216]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[217]  M. Kok,et al.  Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa , 1996, Antimicrobial agents and chemotherapy.

[218]  H. Nikaido Multidrug efflux pumps of gram-negative bacteria , 1996, Journal of bacteriology.

[219]  B. Wiedemann,et al.  Location of N-acetylmuramyl-L-alanyl-D-glutamylmesodiaminopimelic acid, presumed signal molecule for beta-lactamase induction, in the bacterial cell , 1996, Antimicrobial agents and chemotherapy.

[220]  D. Heinrichs,et al.  Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression , 1996, Antimicrobial agents and chemotherapy.

[221]  K. Poole,et al.  Overexpression of the mexC–mexD–oprJ efflux operon in nfxB‐type multidrug‐resistant strains of Pseudomonas aeruginosa , 1996, Molecular microbiology.

[222]  J. Leser,et al.  Sequencing and analysis of four new Enterobacter ampD Alleles , 1996, Antimicrobial agents and chemotherapy.

[223]  J. García-de-Lomas,et al.  Meropenem permeation through the outer membrane of Pseudomonas aeruginosa can involve pathways other than the OprD porin channel. , 1996, Chemotherapy.

[224]  N. Masuda,et al.  Quantitative correlation between susceptibility and OprJ production in NfxB mutants of Pseudomonas aeruginosa , 1996, Antimicrobial agents and chemotherapy.

[225]  I. Kim,et al.  Affinity purification and binding characteristics of Citrobacter freundii AmpR, the transcriptional regulator of the ampC beta-lactamase gene. , 1996, Biotechnology and applied biochemistry.

[226]  I. Phillips,et al.  DNA sequence differences of ampD mutants of Citrobacter freundii , 1995, Antimicrobial agents and chemotherapy.

[227]  K. Ishiguro,et al.  Purification and Characterization of the Pseudomonas aeruginosa NfxB Protein, the Negative Regulator of the nfxB Gene , 2022 .

[228]  H. Nikaido,et al.  Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[229]  N. Masuda,et al.  Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[230]  T. Nishino,et al.  nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[231]  D. Livermore,et al.  Transferable production of PER-1 β-lactamase in Pseudomonas aeruginosa , 1995 .

[232]  J. Frère,et al.  AmpD, essential for both β‐lactamase regulation and cell wall recycling, is a novel cytosolic N‐acetylmuramyl‐L‐alanine amidase , 1995, Molecular microbiology.

[233]  D. Livermore,et al.  Transferable production of PER-1 beta-lactamase in Pseudomonas aeruginosa. , 1995, The Journal of antimicrobial chemotherapy.

[234]  S. Normark,et al.  Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta‐lactamase induction. , 1994, The EMBO journal.

[235]  J. Höltje,et al.  The negative regulator of beta-lactamase induction AmpD is a N-acetyl-anhydromuramyl-L-alanine amidase. , 1994, FEMS microbiology letters.

[236]  P. Nordmann,et al.  Sequence analysis of PER-1 extended-spectrum beta-lactamase from Pseudomonas aeruginosa and comparison with class A beta-lactamases , 1994, Antimicrobial Agents and Chemotherapy.

[237]  A. Ehrhardt,et al.  β-Lactam resistance amongst Enterobacter species , 1993 .

[238]  H. Yoneyama,et al.  Mechanism of efficient elimination of protein D2 in outer membrane of imipenem-resistant Pseudomonas aeruginosa , 1993, Antimicrobial Agents and Chemotherapy.

[239]  S. Normark,et al.  Interactions of wild‐type and mutant AmpR of Citrobacter freundii with target DNA , 1993, Molecular microbiology.

[240]  D. Heinrichs,et al.  Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine , 1993, Molecular microbiology.

[241]  R. Gaynes,et al.  An overview of nosocomial infections, including the role of the microbiology laboratory , 1993, Clinical Microbiology Reviews.

[242]  C. Sanders,et al.  Cefepime: the next generation? , 1993, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[243]  H. H. Martin,et al.  AmpG, a signal transducer in chromosomal β‐lactamase induction , 1993 .

[244]  S. Busby,et al.  Investigation of the Pseudomonas aeruginosa ampR gene and its role at the chromosomal ampC beta-lactamase promoter. , 1993, FEMS microbiology letters.

[245]  J. Weiner,et al.  Overproduction, solubilization, purification and DNA-binding properties of AmpR from Citrobacter freundii. , 1993, European journal of biochemistry.

[246]  S. Lindquist,et al.  Sequences of wild-type and mutant ampD genes of Citrobacter freundii and Enterobacter cloacae , 1993, Antimicrobial Agents and Chemotherapy.

[247]  H. H. Martin,et al.  AmpG, a signal transducer in chromosomal beta-lactamase induction. , 1993, Molecular microbiology.

[248]  A. Ehrhardt,et al.  beta-Lactam resistance amongst Enterobacter species. , 1993, The Journal of antimicrobial chemotherapy.

[249]  D. Livermore Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.

[250]  C. Sanders beta-Lactamases of gram-negative bacteria: new challenges for new drugs. , 1992, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[251]  L. Piddock,et al.  Selection and characterization of cefepime-resistant gram-negative bacteria. , 1991, The Journal of antimicrobial chemotherapy.

[252]  H. Yoneyama,et al.  Role of OmpD2 and chromosomal beta-lactamase in carbapenem resistance in clinical isolates of Pseudomonas aeruginosa. , 1991, The Journal of antimicrobial chemotherapy.

[253]  S. Normark,et al.  Purification and mutant analysis of Citrobacter freundii AmpR, the regulator for chromosomal AmpC β‐lactamase , 1991, Molecular microbiology.

[254]  E. S. Moland,et al.  Altered phenotypes associated with ampD mutations in Enterobacter cloacae , 1991, Antimicrobial Agents and Chemotherapy.

[255]  S. Mitsuhashi,et al.  Transferable imipenem resistance in Pseudomonas aeruginosa , 1991, Antimicrobial Agents and Chemotherapy.

[256]  R. Hancock,et al.  Reevaluation of the factors involved in the efficacy of new beta-lactams against Enterobacter cloacae , 1991, Antimicrobial Agents and Chemotherapy.

[257]  S. Busby,et al.  Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. , 1990, The Biochemical journal.

[258]  H. Nikaido,et al.  Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. , 1990, The Journal of biological chemistry.

[259]  H. Nikaido,et al.  Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa , 1990, Antimicrobial Agents and Chemotherapy.

[260]  C. Sanders,et al.  Diverse potential of beta-lactamase inhibitors to induce class I enzymes , 1990, Antimicrobial Agents and Chemotherapy.

[261]  H. Nikaido Outer membrane barrier as a mechanism of antimicrobial resistance , 1989, Antimicrobial Agents and Chemotherapy.

[262]  C. Sanders,et al.  ampG is essential for high-level expression of AmpC beta-lactamase in Enterobacter cloacae , 1989, Antimicrobial Agents and Chemotherapy.

[263]  S. Cole,et al.  Regulation of enterobacterial cephalosporinase production: the role of a membrane‐bound sensory transducer , 1989, Molecular microbiology.

[264]  I. Chopra,et al.  Penicillin-binding protein 2 is required for induction of the Citrobacter freundii class I chromosomal beta-lactamase in Escherichia coli , 1989, Antimicrobial Agents and Chemotherapy.

[265]  S. Lindquist,et al.  Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC beta-lactamase gene , 1989, Journal of bacteriology.

[266]  G. Drusano,et al.  Emergence of resistance to carbapenem antibiotics in Pseudomonas aeruginosa. , 1989, The Journal of antimicrobial chemotherapy.

[267]  C. Sanders,et al.  Heterogeneity of class I beta-lactamase expression in clinical isolates of Pseudomonas aeruginosa , 1988, Antimicrobial Agents and Chemotherapy.

[268]  P. Turgeon,et al.  Selection of resistance by piperacillin during Pseudomonas aeruginosa endocarditis. , 1988, The Journal of antimicrobial chemotherapy.

[269]  C. Sanders,et al.  Inducible beta-lactamases: clinical and epidemiologic implications for use of newer cephalosporins. , 1988, Reviews of infectious diseases.

[270]  S. Lindquist,et al.  Genetic basis of induction and overproduction of chromosomal class I beta-lactamase in nonfastidious gram-negative bacilli. , 1988, Reviews of infectious diseases.

[271]  J. Quinn,et al.  Resistance to imipenem in Pseudomonas aeruginosa: clinical experience and biochemical mechanisms. , 1988, Reviews of infectious diseases.

[272]  J. Gatell,et al.  Pseudomonas aeruginosa bacteremia: univariate and multivariate analyses of factors influencing the prognosis in 133 episodes. , 1988, Reviews of infectious diseases.

[273]  S. Mitsuhashi,et al.  Cephalosporinase interactions and antimicrobial activity of BMY-28142, ceftazidime and cefotaxime. , 1988, The Journal of antibiotics.

[274]  E. E. Stobbeeringh Induction of chromosomal β-lactamases by different concentrations of clavulanic acid in combination with ticardillin , 1988 .

[275]  E. Stobberingh Induction of chromosomal beta-lactamases by different concentrations of clavulanic acid in combination with ticarcillin. , 1988, The Journal of antimicrobial chemotherapy.

[276]  M. J. Lynch,et al.  Emergence of resistance to imipenem in Pseudomonas aeruginosa , 1987, Antimicrobial Agents and Chemotherapy.

[277]  R. Masterton,et al.  TIMENTIN RESISTANCE , 1987, The Lancet.

[278]  S. Lindquist,et al.  Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii beta-lactamase , 1987, Journal of bacteriology.

[279]  D. Livermore,et al.  β-Lactamase Lability and Inducer Power of Newer β-Lactam Antibiotics in Relation to Their Activity Against β-Lactamase-Inducibility Mutants of Pseudomonas aeruginosa , 1987 .

[280]  D. Livermore,et al.  Beta-lactamase lability and inducer power of newer beta-lactam antibiotics in relation to their activity against beta-lactamase-inducibility mutants of Pseudomonas aeruginosa. , 1987, The Journal of infectious diseases.

[281]  S T Cole,et al.  Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. , 1986, The EMBO journal.

[282]  C. Sanders,et al.  Type I β-Lactamases of Gram-Negative Bacteria: Interactions with β-Lactam Antibiotics , 1986 .

[283]  R. Goering,et al.  Evidence for multiple forms of type I chromosomal beta-lactamase in Pseudomonas aeruginosa , 1986, Antimicrobial Agents and Chemotherapy.

[284]  J. Quinn,et al.  Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. , 1986, The Journal of infectious diseases.

[285]  A. Medeiros,et al.  Failure of therapy in pseudomonas endocarditis: selection of resistant mutants. , 1986, The Journal of infectious diseases.

[286]  R. Labia,et al.  Timentin and beta-lactamases. , 1986, The Journal of antimicrobial chemotherapy.

[287]  C. Sanders,et al.  Type I beta-lactamases of gram-negative bacteria: interactions with beta-lactam antibiotics. , 1986, The Journal of infectious diseases.

[288]  R. Labia,et al.  Timentin and β-lactamases , 1986 .

[289]  A. Prince,et al.  Treatment of lower respiratory tract infections due to Pseudomonas aeruginosa in patients with cystic fibrosis. , 1985, Reviews of infectious diseases.

[290]  E. Goodell Recycling of murein by Escherichia coli , 1985, Journal of bacteriology.

[291]  S. Normark,et al.  Regulatory components in Citrobacter freundii ampC beta-lactamase induction. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[292]  F. Yoshimura,et al.  Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12 , 1985, Antimicrobial Agents and Chemotherapy.

[293]  S. Levin,et al.  Community-acquired Pseudomonas aeruginosa pneumonia associated with the use of a home humidifier. , 1984, The Western journal of medicine.

[294]  Carle Gessard On the Blue and Green Coloration that Appears on Bandages , 1984 .

[295]  Classics in infectious diseases. On the blue and green coloration that appears on bandages. By Carle Gessard (1850-1925). , 1984, Reviews of infectious diseases.

[296]  A. Chow,et al.  Prospective randomized trial of piperacillin monotherapy versus carboxypenicillin-aminoglycoside combination regimens in the empirical treatment of serious bacterial infections , 1983, Antimicrobial Agents and Chemotherapy.

[297]  C. Sanders,et al.  Emergence of resistance during therapy with the newer β-lactam antibiotics: role of inducible β-lactamases and implications for the future , 1983 .

[298]  C. Park,et al.  Piperacillin Therapy for Pseudomonas Infections , 1983, Southern medical journal.

[299]  C. Sanders,et al.  Emergence of resistance during therapy with the newer beta-lactam antibiotics: role of inducible beta-lactamases and implications for the future. , 1983, Reviews of infectious diseases.

[300]  John E. Bennett,et al.  Principles and practices of infectious diseases , 1979 .

[301]  John E. Bennett,et al.  Principles and practice of infectious diseases. Vols 1 and 2. , 1979 .

[302]  T. Grundström,et al.  Escherichia coli K-12 Mutants Hyperproducing Chromosomal Beta-Lactamase by Gene Repetitions , 1977, Journal of bacteriology.

[303]  L. Freeman CHRONIC GENERAL INFECTION WITH THE BACILLUS PYOCYANEUS , 1916, Annals of surgery.