UV-activated hollow ZnO@TiO2 heterostructured nanaospheres for detecting formaldehyde at room temperature

[1]  Baoyu Huang,et al.  MXene/SnS2 Heterojunction for Detecting Sub-ppm NH3 at Room Temperature. , 2023, ACS applied materials & interfaces.

[2]  Baoyu Huang,et al.  UV-Enhanced Formaldehyde Sensor Using Hollow In2O3@TiO2 Double-Layer Nanospheres at Room Temperature. , 2023, ACS applied materials & interfaces.

[3]  Zhijun Liang,et al.  UV-activated efficient formaldehyde gas sensor based on cauliflower-like Graphene-modified In-doped ZnO at room temperature , 2022, Journal of Alloys and Compounds.

[4]  Jijun Ding,et al.  Highly sensitive ethylene glycol gas sensor based on ZnO/rGO nanosheets , 2022, Sensors and Actuators B: Chemical.

[5]  Baoyu Huang,et al.  Layered Mxene Heterostructured with In2o3 Nanoparticles for Ammonia Sensors at Room Temperature , 2022, SSRN Electronic Journal.

[6]  Yanhong Lin,et al.  A Highly efficient room-temperature formaldehyde gas sensor based on a Ni-doped ZnO hierarchical porous structure decorated with NiS illuminated by UV light , 2022, Journal of Alloys and Compounds.

[7]  N. Bârsan,et al.  Current state of knowledge on the metal oxide based gas sensing mechanism , 2022, Sensors and Actuators B: Chemical.

[8]  D. Correa,et al.  A Review on Chemiresistive ZnO Gas Sensors , 2022, Sensors and Actuators Reports.

[9]  Q. Xue,et al.  Sensing mechanism of acetone adsorption on charged ZnO and ZnSe surfaces: Insights from DFT calculations , 2022, Materials Today Communications.

[10]  Yating Wang,et al.  Controllable band structure of ZnO/g-C3N4 aggregation to enhance gas sensing for the dimethylamine detection , 2022, Sensors and Actuators Reports.

[11]  Conductometric NO2 gas sensors based on MOF-derived porous ZnO nanoparticles , 2022, Sensors and Actuators B: Chemical.

[12]  R. Maboudian,et al.  In-situ synthesized N-doped ZnO for enhanced CO2 sensing: experiments and DFT calculations , 2022, Sensors and Actuators B: Chemical.

[13]  F. Dong,et al.  Porous Mn-Doped Co3O4 Nanosheets: Gas Sensing Performance and Interfacial Mechanism Investigation with In Situ DRIFTS , 2021, Sensors and Actuators B: Chemical.

[14]  Yuhan Sun,et al.  Synergistic Ni Single Atoms and Oxygen Vacancies on SnO2 nanorods toward Promoting SO2 Gas Sensing , 2021, Sensors and Actuators B: Chemical.

[15]  Tong Zhang,et al.  TiO2 nanostructures with different crystal phases for sensitive acetone gas sensors. , 2021, Journal of colloid and interface science.

[16]  A. Hakeem,et al.  Engineering the depletion layer of Au-modified ZnO/Ag core-shell films for high-performance acetone gas sensing , 2021, Sensors and Actuators B: Chemical.

[17]  Itthipon Jeerapan,et al.  Recent progress in intrinsic and stimulated room-temperature gas sensors enabled by low-dimensional materials , 2021 .

[18]  S. Komarneni,et al.  Light-activated room-temperature gas sensors based on metal oxide nanostructures: A review on recent advances , 2020 .

[19]  Chaonan Wang,et al.  Advances in Doped ZnO Nanostructures for Gas Sensor , 2020, Chemical record.

[20]  D. Gu,et al.  Detection of Ppb-level NO2 using mesoporous ZnSe/SnO2 core-shell microspheres based chemical sensors , 2020 .

[21]  Mahesh Kumar,et al.  Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review , 2020 .

[22]  A. Nikfarjam,et al.  Hierarchical Dense Array of ZnO Nanowires Spatially Grown on ZnO/TiO2 Nanofibers and Their Ultraviolet Activated Gas Sensing Properties , 2020, The Journal of Physical Chemistry C.

[23]  D. Gu,et al.  UV Light Activated SnO2/ZnO Nanofibers for Gas Sensing at Room Temperature , 2019, Front. Mater..

[24]  Jiang Pan,et al.  ZIF-8 derived hierarchical hollow ZnO nanocages with quantum dots for sensitive ethanol gas detection , 2019, Sensors and Actuators B: Chemical.

[25]  B. Zhang,et al.  Synthesis of novel porous ZnO octahedrons and their improved UV-light activated formaldehyde-sensing performance by Au decoration , 2019, Physica E: Low-dimensional Systems and Nanostructures.

[26]  Lingzhang Zhu,et al.  Room-temperature gas sensing of ZnO-based gas sensor: A review , 2017 .

[27]  Fariborz Taghipour,et al.  UV-LED Photo-activated Chemical Gas Sensors: A Review , 2017 .

[28]  Nan Qin,et al.  The crystal facet-dependent gas sensing properties of ZnO nanosheets: Experimental and computational study , 2017 .

[29]  Jing Wang,et al.  UV activated hollow ZnO microspheres for selective ethanol sensors at low temperatures , 2016 .

[30]  Pramod K. Singh,et al.  Studies on acetone sensing characteristics of ZnO thin film prepared by sol–gel dip coating , 2016 .

[31]  Yanhong Lin,et al.  UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures , 2016 .

[32]  Hongwei Zhu,et al.  Reduced graphene oxide/hierarchical flower-like zinc oxide hybrid films for room temperature formaldehyde detection , 2015 .

[33]  Jie Zhang,et al.  ZnFe2O4 nanoparticles: Synthesis, characterization, and enhanced gas sensing property for acetone , 2015 .

[34]  Shuyi Ma,et al.  Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance , 2015 .

[35]  A. Alazba,et al.  Photocatalysis and Bandgap Engineering Using ZnO Nanocomposites , 2015 .

[36]  K. J. Patel,et al.  Endogenous Formaldehyde Is a Hematopoietic Stem Cell Genotoxin and Metabolic Carcinogen , 2015, Molecular cell.

[37]  Liang Peng,et al.  Improvement of formaldehyde sensitivity of ZnO nanorods by modifying with Ru(dcbpy)2(NCS)2 , 2011 .

[38]  K. Ho,et al.  Using a TiO2/ZnO double-layer film for improving the sensing performance of ZnO based NO gas sensor , 2011 .

[39]  Nguyen Duc Thien,et al.  Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites , 2011, Sensors.

[40]  J. H. Lee,et al.  Gas sensors using hierarchical and hollow oxide nanostructures: Overview , 2009 .

[41]  Taihong Wang,et al.  Ab Initio Study Of Zno-Based Gas-Sensing Mechanisms: Surface Reconstruction And Charge Transfer , 2009 .

[42]  Zhifu Liu,et al.  Influence of effective surface area on gas sensing properties of WO3 sputtered thin films , 2009 .

[43]  L. Archer,et al.  Hollow Micro‐/Nanostructures: Synthesis and Applications , 2008 .

[44]  Chao Li,et al.  Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room temperature , 2008, Microelectron. J..

[45]  Zhihao Yuan,et al.  Nanopillar ZnO gas sensor for hydrogen and ethanol , 2007 .

[46]  S. Christoulakis,et al.  ZnO transparent thin films for gas sensor applications , 2006 .

[47]  Xiao Wei Sun,et al.  Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications , 2006 .

[48]  Chen Yuping,et al.  Hydrothermal synthesis and gas sensing characters of ZnO nanorods , 2006 .

[49]  Noboru Yamazoe,et al.  Toward innovations of gas sensor technology , 2005 .

[50]  M. Casanova,et al.  The implausibility of leukemia induction by formaldehyde: a critical review of the biological evidence on distant-site toxicity. , 2004, Regulatory toxicology and pharmacology : RTP.

[51]  J. Shaham,et al.  DNA–protein crosslinks and p53 protein expression in relation to occupational exposure to formaldehyde , 2003, Occupational and environmental medicine.

[52]  Zhengrong Yang,et al.  One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles , 2002 .

[53]  Qingyi Pan,et al.  Grain size control and gas sensing properties of ZnO gas sensor , 2000 .

[54]  J. Saura,et al.  Gas-sensing properties of SnO2 pyrolytic films subjected to ultrviolet radiation , 1994 .

[55]  Norio Miura,et al.  Sensing Characteristics and Working Mechanism of Four‐Probe Type Solid‐State Hydrogen Sensor Using Proton Conductor , 1989 .

[56]  Ho Won Jang,et al.  Light-activated gas sensing: a perspective of integration with micro-LEDs and plasmonic nanoparticles , 2021, Materials Advances.

[57]  Changsheng Xie,et al.  A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature , 2012 .