Molecular therapies in β‐thalassaemia

The β‐thalassaemias have a major global impact on health and mortality. Allogeneic haemopoietic stem cell transplantation is the only approach that may lead to a cure but this approach is not available to most patients. The mainstay treatment for the majority remains life‐long blood transfusion in combination with a rigorous regime of iron chelation. Improved understanding of the pathophysiology and molecular basis of the disease has provided clues for more effective strategies that aim to correct the defect in β‐globin chain synthesis at the primary level or redress the α/β‐globin chain imbalance at the secondary level. Improved understanding of the molecular basis of the disease complications, such as iron overloading, has also provided clues for potential molecular targets at the tertiary level.

[1]  R. Ljung,et al.  The thalassaemia syndromes , 2007, Scandinavian journal of clinical and laboratory investigation.

[2]  D. Faller,et al.  Short-chain fatty acids induce gamma-globin gene expression by displacement of a HDAC3-NCoR repressor complex. , 2006, Blood.

[3]  T. Townes,et al.  Correction of sickle cell disease by homologous recombination in embryonic stem cells. , 2006, Blood.

[4]  S. Perrine Hemoglobin F: new targets, new path , 2006 .

[5]  Steve Best,et al.  cMYB is involved in the regulation of fetal hemoglobin production in adults. , 2006, Blood.

[6]  S. Rivella,et al.  mRNA expression of iron regulatory genes in β‐thalassemia intermedia and β‐thalassemia major mouse models , 2006 .

[7]  J. Ragoussis,et al.  α‐Haemoglobin stabilising protein is a quantitative trait gene that modifies the phenotype of β‐thalassaemia , 2006 .

[8]  Y. Kan,et al.  Correction of the sickle cell mutation in embryonic stem cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Sadelain,et al.  A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference , 2006, Nature Biotechnology.

[10]  J. Ragoussis,et al.  Alpha-haemoglobin stabilising protein is a quantitative trait gene that modifies the phenotype of beta-thalassaemia. , 2006, British journal of haematology.

[11]  S. Rivella,et al.  mRNA expression of iron regulatory genes in beta-thalassemia intermedia and beta-thalassemia major mouse models. , 2006, American journal of hematology.

[12]  I. Papassotiriou,et al.  The effects of erythropoetic activity and iron burden on hepcidin expression in patients with thalassemia major. , 2006, Haematologica.

[13]  T. Ganz,et al.  Hepcidin and iron-loading anemias. , 2006, Haematologica.

[14]  M. Andreani,et al.  Bone Marrow Transplantation in Adults with Thalassemia: Treatment and Long‐Term Follow‐Up , 2005, Annals of the New York Academy of Sciences.

[15]  L. Kean,et al.  Murine and Math Models for the Level of Stable Mixed Chimerism to Cure β‐Thalassemia by Nonmyeloablative Bone Marrow Transplantation , 2005, Annals of the New York Academy of Sciences.

[16]  A. Pession,et al.  Unrelated Bone Marrow Transplantation for β‐Thalassemia Patients: The Experience of the Italian Bone Marrow Transplant Group , 2005, Annals of the New York Academy of Sciences.

[17]  N. Anagnou,et al.  Use of the hereditary persistence of fetal hemoglobin 2 enhancer to increase the expression of oncoretrovirus vectors for human gamma-globin , 2005, Gene Therapy.

[18]  T. Ganz,et al.  Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. , 2005, Blood.

[19]  T. Dissayabutra,et al.  The benefits of vitamin C and vitamin E in children with beta-thalassemia with high oxidative stress. , 2005, Journal of the Medical Association of Thailand = Chotmaihet thangphaet.

[20]  G. Stamatoyannopoulos Control of globin gene expression during development and erythroid differentiation. , 2005, Experimental hematology.

[21]  S. Thein Genetic modifiers of beta-thalassemia. , 2005, Haematologica.

[22]  Swee Lay Thein,et al.  Pathophysiology of beta thalassemia--a guide to molecular therapies. , 2005, Hematology. American Society of Hematology. Education Program.

[23]  P. Malik,et al.  Gene Therapy for beta-thalassemia. , 2005, Hematology. American Society of Hematology. Education Program.

[24]  S. Perrine Fetal Globin Induction—Can It Cure β Thalassemia? , 2005 .

[25]  S. Perrine,et al.  Pathophysiology of β Thalassemia — A Guide to Molecular Therapies , 2005 .

[26]  M. Cazzola,et al.  Somatic deletion of the normal β‐globin gene leading to thalassaemia intermedia in heterozygous β‐thalassaemic patients , 2004, British journal of haematology.

[27]  Licheng Zeng,et al.  Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. , 2004, Blood.

[28]  D. Srivastava,et al.  Extended β-globin locus control region elements promote consistent therapeutic expression of a γ-globin lentiviral vector in murine β-thalassemia , 2004 .

[29]  G. Rodgers,et al.  Inhibition of β protein 1 expression enhances β-globin promoter activity and β-globin mRNA levels in the human erythroleukemia (K562) cell line , 2004 .

[30]  E. Fibach,et al.  Flow cytometric analysis of the oxidative status of normal and thalassemic red blood cells , 2004, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[31]  M. Weiss,et al.  Evaluation of alpha hemoglobin stabilizing protein (AHSP) as a genetic modifier in patients with beta thalassemia. , 2004, Blood.

[32]  M. Hentze,et al.  Balancing Acts Molecular Control of Mammalian Iron Metabolism , 2004, Cell.

[33]  I. Papassotiriou,et al.  A rare example that coinheritance of a severe form of β-thalassemia and α-thalassemia interact in a “synergistic” manner to balance the phenotype of classic thalassemic syndromes , 2004 .

[34]  Kuypers Fa,et al.  The role of phosphatidylserine in recognition and removal of erythrocytes. , 2004 .

[35]  Yang Li,et al.  Umbilical Cord Blood Transplantation in Chinese Children With Beta-Thalassemia , 2004, Journal of pediatric hematology/oncology.

[36]  Swee Lay Thein,et al.  Genetic insights into the clinical diversity of β thalassaemia , 2004, British journal of haematology.

[37]  F. Kuypers,et al.  The role of phosphatidylserine in recognition and removal of erythrocytes. , 2004, Cellular and molecular biology.

[38]  D. Srivastava,et al.  Extended beta-globin locus control region elements promote consistent therapeutic expression of a gamma-globin lentiviral vector in murine beta-thalassemia. , 2004, Blood.

[39]  G. Rodgers,et al.  Inhibition of beta protein 1 expression enhances beta-globin promoter activity and beta-globin mRNA levels in the human erythroleukemia (K562) cell line. , 2004, Experimental Hematology.

[40]  E. Bakker,et al.  Response to hydroxyurea treatment in Iranian transfusion-dependent beta-thalassemia patients. , 2004, Haematologica.

[41]  I. Papassotiriou,et al.  A rare example that coinheritance of a severe form of beta-thalassemia and alpha-thalassemia interact in a "synergistic" manner to balance the phenotype of classic thalassemic syndromes. , 2004, Blood Cells, Molecules & Diseases.

[42]  A. Cnaan,et al.  Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. , 2004, Haematologica.

[43]  Cameron S. Osborne,et al.  LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1 , 2003, Science.

[44]  M. Bradai,et al.  Hydroxyurea can eliminate transfusion requirements in children with severe beta-thalassemia. , 2003, Blood.

[45]  Allen R. Chen,et al.  Results of minimally toxic nonmyeloablative transplantation in patients with sickle cell anemia and beta-thalassemia. , 2003, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[46]  S. Rivella,et al.  A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer. , 2003, Blood.

[47]  A. Nienhuis,et al.  The degree of phenotypic correction of murine beta -thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. , 2003, Blood.

[48]  J. Kurtzberg,et al.  Related umbilical cord blood transplantation in patients with thalassemia and sickle cell disease. , 2003, Blood.

[49]  G. Lucarelli,et al.  Stem cell transplantation for hemoglobinopathies , 2003, Current opinion in pediatrics.

[50]  M. Gladwin,et al.  Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. , 2003, The Journal of clinical investigation.

[51]  B. Pace,et al.  Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. , 2002, Blood.

[52]  R. Kole,et al.  Repair of a splicing defect in erythroid cells from patients with beta-thalassemia/HbE disorder. , 2002, Molecular therapy : the journal of the American Society of Gene Therapy.

[53]  R. Nagel,et al.  Permanent and panerythroid correction of murine β thalassemia by multiple lentiviral integration in hematopoietic stem cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S. Orkin,et al.  X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. , 2002, Blood.

[55]  R. Kole,et al.  Restoration of human beta-globin gene expression in murine and human IVS2-654 thalassemic erythroid cells by free uptake of antisense oligonucleotides. , 2002, Molecular pharmacology.

[56]  G. Blobel,et al.  An abundant erythroid protein that stabilizes free α-haemoglobin , 2002, Nature.

[57]  L. Luzzatto,et al.  Physiology: Haemoglobin's chaperone , 2002, Nature.

[58]  D. Lavelle,et al.  Maintenance of elevated fetal hemoglobin levels by decitabine during dose interval treatment of sickle cell anemia. , 2002, Blood.

[59]  M. Cappellini,et al.  Oxidative status and malondialdehyde in β‐thalassaemia patients , 2002 .

[60]  C. Lapouméroulie,et al.  A novel mechanism for thalassaemia intermedia , 2002, The Lancet.

[61]  M. Cappellini,et al.  Oxidative status and malondialdehyde in beta-thalassaemia patients. , 2002, European journal of clinical investigation.

[62]  G. Blobel,et al.  An abundant erythroid protein that stabilizes free alpha-haemoglobin. , 2002, Nature.

[63]  J. Tolmie,et al.  Mutations in the general transcription factor TFIIH result in beta-thalassaemia in individuals with trichothiodystrophy. , 2001, Human molecular genetics.

[64]  E. Rachmilewitz,et al.  Pathophysiology of a- and -thalassemia: Therapeutic implications , 2001 .

[65]  D. Loukopoulos,et al.  Pharmacological induction of fetal hemoglobin in sickle cell disease and beta-thalassemia. , 2001, Seminars in hematology.

[66]  E. Rachmilewitz,et al.  Pathophysiology of alpha- and beta-thalassemia: therapeutic implications. , 2001, Seminars in hematology (Print).

[67]  B. Pace,et al.  Short-chain fatty acid derivatives stimulate cell proliferation and induce STAT-5 activation. , 2001, Blood.

[68]  G. Henze,et al.  Oral isobutyramide reduces transfusion requirements in some patients with homozygous β-thalassemia , 2000 .

[69]  D. Bodine,et al.  A Minimal Ankyrin Promoter Linked to a Human γ-Globin Gene Demonstrates Erythroid Specific Copy Number Dependent Expression with Minimal Position or Enhancer Dependence in Transgenic Mice* , 2000, The Journal of Biological Chemistry.

[70]  Michel Sadelain,et al.  Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin , 2000, Nature.

[71]  M. Andreani,et al.  Long-term survival of ex-thalassemic patients with persistent mixed chimerism after bone marrow transplantation , 2000, Bone Marrow Transplantation.

[72]  P. Glazer,et al.  Activation of human γ-globin gene expression via triplex-forming oligonucleotide (TFO)-directed mutations in the γ-globin gene 5' flanking region , 2000 .

[73]  P. Glazer,et al.  Activation of human gamma-globin gene expression via triplex-forming oligonucleotide (TFO)-directed mutations in the gamma-globin gene 5' flanking region. , 2000, Gene.

[74]  S. Rivella,et al.  Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. , 2000, Nature.

[75]  M Farrall,et al.  Genetic influences on F cells and other hematologic variables: a twin heritability study. , 2000, Blood.

[76]  G. Henze,et al.  Oral isobutyramide reduces transfusion requirements in some patients with homozygousb-thalassemia , 2000 .

[77]  T. Spector,et al.  A candidate gene study of F cell levels in sibling pairs using a joint linkage and association analysis. , 1999 .

[78]  G. Stamatoyannopoulos,et al.  Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease. , 1999, Blood.

[79]  J. Strovel,et al.  Binding of HMG‐I(Y) elicits structural changes in a silencer of the human β‐globin gene , 1999, American journal of hematology.

[80]  N. Olivieri,et al.  Regression of extramedullary haemopoiesis and augmentation of fetal haemoglobin concentration during hydroxyurea therapy in β thalassaemia , 1998, British journal of haematology.

[81]  D. Loukopoulos,et al.  Hydroxyurea Therapy in Thalassemia a , 1998, Annals of the New York Academy of Sciences.

[82]  E. Rachmilewitz,et al.  The Role of Recombinant Human Erythropoietin in the Treatment of Thalassemia , 1998, Annals of the New York Academy of Sciences.

[83]  F. Grosveld,et al.  The Dynamics of Globin Gene Expression and Gene Therapy Vectors , 1998, Annals of the New York Academy of Sciences.

[84]  Hall,et al.  Beta‐thalassaemia intermedia: is it possible consistently to predict phenotype from genotype? , 1998, British journal of haematology.

[85]  M. Chevion,et al.  Protective effects of tea polyphenols against oxidative damage to red blood cells. , 1997, Biochemical pharmacology.

[86]  David C Rees,et al.  Treatment of thalassaemia major with phenylbutyrate and hydroxyurea , 1997, The Lancet.

[87]  J. Shaeffer,et al.  Ubiquitin Aldehyde Increases Adenosine Triphosphate–Dependent Proteolysis of Hemoglobin α-Subunits in β-Thalassemic Hemolysates , 1997 .

[88]  A. Oppenheim,et al.  Genetic analysis of β‐thalassemia intermedia in Israel: Diversity of mechanisms and unpredictability of phenotype , 1997, American journal of hematology.

[89]  J. Georgiou,et al.  Administration of high doses of recombinant human erythropoietin to patients with β‐thalassemia intermedia: a preliminary trial , 1997, European journal of haematology.

[90]  J. Shaeffer,et al.  Ubiquitin aldehyde increases adenosine triphosphate-dependent proteolysis of hemoglobin alpha-subunits in beta-thalassemic hemolysates. , 1997, Blood.

[91]  S. Agrawal,et al.  Repair of thalassemic human beta-globin mRNA in mammalian cells by antisense oligonucleotides. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[92]  J. Clegg,et al.  Thalassemia — a global public health problem , 1996, Nature Medicine.

[93]  O. Shalev,et al.  Studies on curcumin and curcuminoids: XXVI. Antioxidant effects of curcumin on the red blood cell membrane , 1996 .

[94]  P. Wong,et al.  Production of genetically stable high-titer retroviral vectors that carry a human gamma-globin gene under the control of the alpha-globin locus control region. , 1996, Blood.

[95]  A. Schechter,et al.  Hydroxyurea increases hemoglobin F levels and improves the effectiveness of erythropoiesis in beta-thalassemia/hemoglobin E disease. , 1996, Blood.

[96]  A. Schechter,et al.  Hydroxyurea therapy in β‐thalassaemia intermedia: improvement in haematological parameters due to enhanced β‐globin synthesis , 1995 .

[97]  N. Olivieri,et al.  Extended therapy with intravenous arginine butyrate in patients with beta-hemoglobinopathies. , 1995, The New England journal of medicine.

[98]  M L Terrin,et al.  Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. , 1995, The New England journal of medicine.

[99]  M. Cappellini,et al.  Genetic interactions in thalassemia intermedia: Analysis of β‐Mutations, α‐Genotype, γ‐Promoters, and β‐LCR hypersensitive sites 2 and 4 in Italian patients , 1995 .

[100]  M. Cappellini,et al.  Genetic interactions in thalassemia intermedia: analysis of beta-mutations, alpha-genotype, gamma-promoters, and beta-LCR hypersensitive sites 2 and 4 in Italian patients. , 1995, American journal of hematology.

[101]  A. Schechter,et al.  Hydroxyurea therapy in beta-thalassaemia intermedia: improvement in haematological parameters due to enhanced beta-globin synthesis. , 1995, British journal of haematology.

[102]  H. Newmark,et al.  Protective effects of rutin against hemoglobin oxidation. , 1994, Biochemical pharmacology.

[103]  G. Barosi,et al.  Serum erythropoietin and erythropoiesis in high- and low-fetal hemoglobin beta-thalassemia intermedia patients. , 1994, Blood.

[104]  A. Nienhuis,et al.  Treatment with Azacitidine of Patients with End-Stage β-Thalassemia , 1993 .

[105]  F. Grosveld,et al.  2 The regulation of human globin gene expression , 1993 .

[106]  J. Flint,et al.  The population genetics of the haemoglobinopathies. , 1993, Bailliere's clinical haematology.

[107]  I. Plavec,et al.  A human beta-globin gene fused to the human beta-globin locus control region is expressed at high levels in erythroid cells of mice engrafted with retrovirus-transduced hematopoietic stem cells. , 1993, Blood.

[108]  D. Faller,et al.  A short-term trial of butyrate to stimulate fetal-globin-gene expression in the beta-globin disorders. , 1993, The New England journal of medicine.

[109]  A. Nienhuis,et al.  Brief report: treatment with azacitidine of patients with end-stage beta-thalassemia. , 1993, The New England journal of medicine.

[110]  A. Schechter,et al.  DNA sequence variation in a negative control region 5' to the beta- globin gene correlates with the phenotypic expression of the beta s mutation , 1992 .

[111]  A. Schechter,et al.  DNA sequence variation in a negative control region 5' to the beta-globin gene correlates with the phenotypic expression of the beta s mutation. , 1992, Blood.

[112]  W. C. Forrester,et al.  High-level beta-globin expression after retroviral transfer of locus activation region-containing human beta-globin gene derivatives into murine erythroleukemia cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[113]  A. Schechter,et al.  A common protein binds to two silencers 5′ to the human β-globin gene , 1989 .

[114]  Y. Kan,et al.  5‐AZACYTIDINE TREATMENT IN A βo‐THALASSAEMIC PATIENT UNABLE TO BE TRANSFUSED DUE TO MULTIPLE ALLOANTIBODIES , 1989, British journal of haematology.

[115]  A. Schechter,et al.  A common protein binds to two silencers 5' to the human beta-globin gene. , 1989, Nucleic acids research.

[116]  R. Mulligan,et al.  Lineage-specific expression of a human β-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells , 1988, Nature.

[117]  R. Mulligan,et al.  Lineage specific expression of a human beta-globin gene in murine bone marrow transplant recipients. , 1988, Advances in experimental medicine and biology.

[118]  R. Mulligan,et al.  Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector , 1987, Molecular and cellular biology.

[119]  A. Bank,et al.  Regulation of human globin gene expression. , 1985, Progress in clinical and biological research.

[120]  5—Azacytidine selectively increases globin synthesis in a patient with thalassemia , 1983 .

[121]  T. Ley,et al.  5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. , 1982, The New England journal of medicine.

[122]  E. Zaino PATHOPHYSIOLOGY OF THALASSEMIA , 1980, Annals of the New York Academy of Sciences.