KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption

Abstract Carbon materials capable of efficient hydrogen electrosorption at ambient conditions can be used for negative electrode material in chemical power sources, competitive for metallic hydride alloys. This paper describes physical, chemical and electrochemical properties of active carbon (LAC) produced from lignin processed by standard carbonization and KOH activation at temperature of 950 °C. Microporous carbon with BET surface of 1946 m 2 /g obtained in such conditions has a complex porous structure with a considerable number of supermicropores and small mesopores (ca. 50%). As a result, efficient hydrogen electrosorption of 510 mA h/g (1.89 wt% in meaning of energy storage) is obtained and favorable discharge characteristics at current densities up to 1 A/g.

[1]  Haoshen Zhou,et al.  Ordered porous carbon with tailored pore size for electrochemical hydrogen storage application. , 2006, The journal of physical chemistry. B.

[2]  F. Béguin,et al.  Electrochemical energy storage in ordered porous carbon materials , 2005 .

[3]  Peter Lamp,et al.  Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes , 1998 .

[4]  P. T. Moseley,et al.  Hydrogen storage by carbon materials , 2006 .

[5]  Gary G. Tibbetts,et al.  Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers , 2001 .

[6]  F. Béguin,et al.  Enhancement of Reversible Hydrogen Capacity into Activated Carbon through Water Electrolysis , 2001 .

[7]  R. Kötz,et al.  Correlation between capacitances of porous carbons in acidic and aprotic EDLC electrolytes , 2007 .

[8]  Shuqin Song,et al.  Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3 , 2007 .

[9]  A. Celzard,et al.  Methodical study of the chemical activation of Kraft lignin with KOH and NaOH , 2007 .

[10]  F. Béguin,et al.  Advantages of electrochemical hydrogen storage over gas adsorption in nanoporous carbons , 2005 .

[11]  J. Bentley,et al.  Hydrogen storage by carbon sorption , 1997 .

[12]  J. Skowronski,et al.  Electrochemical behavior of metal hydrides , 2001 .

[13]  M. Hirscher,et al.  Hydrogen storage in carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[14]  Wei Xing,et al.  Superior electric double layer capacitors using ordered mesoporous carbons , 2006 .

[15]  H. Dai,et al.  Hydrogenation of single-walled carbon nanotubes. , 2005, Physical review letters.

[16]  François Béguin,et al.  Effect of various porous nanotextures on the reversible electrochemical sorption of hydrogen in activated carbons , 2006 .

[17]  Fritz Stoeckli,et al.  The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons , 2006 .

[18]  M. Hajaligol,et al.  Characterization of chars from pyrolysis of lignin , 2004 .

[19]  Suhas,et al.  Lignin--from natural adsorbent to activated carbon: a review. , 2007, Bioresource technology.

[20]  J. Dentzer,et al.  Hydrogen storage in activated carbon materials: Role of the nanoporous texture , 2004 .

[21]  A. Watkinson,et al.  Preparation of activated carbon from lignin by chemical activation , 2000 .

[22]  Andreas Züttel,et al.  Hydrogen interaction with carbon nanostructures - current situation and future prospects , 2003 .

[23]  D. Montané,et al.  Activated carbons from lignin: kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid , 2005 .

[24]  Diego Cazorla-Amorós,et al.  Hydrogen Storage in Activated Carbons and Activated Carbon Fibers , 2002 .

[25]  F. Béguin,et al.  Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials , 2004 .

[26]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[27]  J. Garche,et al.  Hydrogen adsorption on carbon materials , 1999 .

[28]  M. Inagaki,et al.  Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors , 2006 .

[29]  Michael Jerry Antal,et al.  Kinetic modeling of biomass pyrolysis , 1997 .

[30]  I. Cabria,et al.  The optimum average nanopore size for hydrogen storage in carbon nanoporous materials , 2007 .

[31]  F. Béguin,et al.  Electrochemical storage of hydrogen in activated carbons , 2002 .

[32]  F. Béguin,et al.  Capacitance properties of ordered porous carbon materials prepared by a templating procedure , 2004 .

[33]  K. Holtman,et al.  Lignin-based carbon fibers: Oxidative thermostabilization of kraft lignin , 2005 .

[34]  M. Hirscher,et al.  Are carbon nanostructures an efficient hydrogen storage medium , 2003 .

[35]  A. Ragauskas,et al.  Review of current and future softwood kraft lignin process chemistry , 2004 .

[36]  G. Kearley,et al.  Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. , 2003, Chemistry.

[37]  H. Hatori,et al.  Adsorptive hydrogen storage in carbon and porous materials , 2004 .

[38]  R. Ryoo,et al.  Mesoporous carbons with KOH activated framework and their hydrogen adsorption , 2007 .

[39]  Li Zhou,et al.  Progress and problems in hydrogen storage methods , 2005 .

[40]  F. Béguin,et al.  State of hydrogen electrochemically stored using nanoporous carbons as negative electrode materials in an aqueous medium , 2006 .

[41]  Michael J. Heben,et al.  Hydrogen storage using carbon adsorbents: past, present and future , 2001 .

[42]  J. Salvadó,et al.  Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins , 2006 .