An integrated and modular model for simulating and evaluating how canopy architecture can help reduce fungicide applications

An integrated model coupling architectural canopy development, disease dynamics, pesticide application, pesticide decay and effect of pesticide on disease dynamics has been developed. It allows simulation of the dynamics of epidemics overall a growth season, together with the evaluation of impacts on environment, yield reduction and erosion of pesticide efficiency. This tool allows for a multi-criteria evaluation of different fungicide applications strategies and for designing new strategies that reduce pesticide applications by increasing natural resistance linked to canopy architecture.

[1]  S. Welham,et al.  Position of inoculum in the canopy affects the risk of septoria tritici blotch epidemics in winter wheat , 2004 .

[2]  Bruno Andrieu,et al.  ADEL-Wheat: a 3D Architectural Model of wheat development , 2003 .

[3]  F. van den Berg,et al.  Emission of Pesticides into the Air , 1999 .

[4]  D. J. Royle,et al.  Influence of crop growth and structure on the risk of epidemics by Mycosphaerella graminicola (Septoria tritici) in winter wheat , 1997 .

[5]  Michel Langlais,et al.  A host‐pathogen simulation model: powdery mildew of grapevine , 2008 .

[6]  I. Gelernter,et al.  Factors affecting the vertical progression of Septoria leaf blotch in short-statured wheats. , 1980 .

[7]  M. Leistra,et al.  Estimating input data for computations on the volatilisation of pesticides from plant canopies and competing processes , 2005 .

[8]  Z. Eyal The kinetics of pycnospore liberation in Septoria tritici , 1971 .

[9]  L. S. Alexander,et al.  Volatilisation of pesticides computed with the PEARL model for different initial distributions within the crop canopy. , 2008 .

[10]  David J. Parsons,et al.  A model of the effect of fungicides on disease-induced yield loss, for use in wheat disease management decision support systems , 2007 .

[11]  T. Katagi Photodegradation of pesticides on plant and soil surfaces. , 2004, Reviews of environmental contamination and toxicology.

[12]  Sukumar Chakraborty,et al.  Pathogen dynamics in a crop canopy and their evolution under changing climate , 2011 .

[13]  Kadi Bouatouch,et al.  Nested radiosity for plant canopies , 1998, The Visual Computer.

[14]  B. Ney,et al.  Modelling wheat growth and yield losses from late epidemics of foliar diseases using loss of green leaf area per layer and pre-anthesis reserves. , 2007, Annals of botany.

[15]  D. J. Royle,et al.  Factors determining the severity of epidemics of Mycosphaerella graminicola (Septoria tritici) on winter wheat in the UK , 1993 .

[16]  B. J. Van Heyst,et al.  A pesticide emission model (PEM) Part I: model development , 2002 .

[17]  Laurence Guichard,et al.  Pesticides, agriculture et environnement. Réduire l'utilisation des pesticides et en limiter les impacts environnementaux. Expertise scientifique collective Inra-Cemagref (décembre 2005) , 2007 .

[18]  Aaldrik Tiktak,et al.  PEARL model for pesticide behaviour and emissions in soil-plant systems , 2001 .

[19]  Christophe Pradal,et al.  Building modular FSPM under OpenAlea: concepts and applications , 2010 .

[20]  C. Fournier,et al.  OpenAlea: a visual programming and component-based software platform for plant modelling. , 2008, Functional plant biology : FPB.

[21]  G. H. Willis,et al.  Pesticide persistence on foliage , 1987 .

[22]  J. Kelly,et al.  Manipulation of plant architecture to enhance crop disease control , 2007 .

[23]  Bruno Andrieu,et al.  Coupling a 3D virtual wheat (Triticum aestivum) plant model with a Septoria tritici epidemic model (Septo3D): a new approach to investigate plant-pathogen interactions linked to canopy architecture. , 2008, Functional plant biology : FPB.