An integrated and modular model for simulating and evaluating how canopy architecture can help reduce fungicide applications
暂无分享,去创建一个
Bruno Andrieu | Sébastien Saint-Jean | Neil Paveley | Christian Fournier | Mariem Abichou | Camille Chambon | Valérie Pot | Christophe Pradal | Marie-Odile Bancal | Carole Bedos | Pierre Benoit | Romain Chapuis | Eric Cotteux | Laure Mamy | Carole Sinfort | Claire Richard | Alexandra ter Halle | Eric Van den Berg | Anne Sophie Walker | Corinne Robert | C. Sinfort | B. Andrieu | L. Mamy | C. Fournier | S. Saint-Jean | N. Paveley | Mariem Abichou | C. Bedos | P. Benoît | V. Pot | C. Pradal | C. Richard | C. Chambon | C. Robert | E. Cotteux | A. Walker | M. Bancal | R. Chapuis | E. V. D. Berg | A. Halle | Romain Chapuis
[1] S. Welham,et al. Position of inoculum in the canopy affects the risk of septoria tritici blotch epidemics in winter wheat , 2004 .
[2] Bruno Andrieu,et al. ADEL-Wheat: a 3D Architectural Model of wheat development , 2003 .
[3] F. van den Berg,et al. Emission of Pesticides into the Air , 1999 .
[4] D. J. Royle,et al. Influence of crop growth and structure on the risk of epidemics by Mycosphaerella graminicola (Septoria tritici) in winter wheat , 1997 .
[5] Michel Langlais,et al. A host‐pathogen simulation model: powdery mildew of grapevine , 2008 .
[6] I. Gelernter,et al. Factors affecting the vertical progression of Septoria leaf blotch in short-statured wheats. , 1980 .
[7] M. Leistra,et al. Estimating input data for computations on the volatilisation of pesticides from plant canopies and competing processes , 2005 .
[8] Z. Eyal. The kinetics of pycnospore liberation in Septoria tritici , 1971 .
[9] L. S. Alexander,et al. Volatilisation of pesticides computed with the PEARL model for different initial distributions within the crop canopy. , 2008 .
[10] David J. Parsons,et al. A model of the effect of fungicides on disease-induced yield loss, for use in wheat disease management decision support systems , 2007 .
[11] T. Katagi. Photodegradation of pesticides on plant and soil surfaces. , 2004, Reviews of environmental contamination and toxicology.
[12] Sukumar Chakraborty,et al. Pathogen dynamics in a crop canopy and their evolution under changing climate , 2011 .
[13] Kadi Bouatouch,et al. Nested radiosity for plant canopies , 1998, The Visual Computer.
[14] B. Ney,et al. Modelling wheat growth and yield losses from late epidemics of foliar diseases using loss of green leaf area per layer and pre-anthesis reserves. , 2007, Annals of botany.
[15] D. J. Royle,et al. Factors determining the severity of epidemics of Mycosphaerella graminicola (Septoria tritici) on winter wheat in the UK , 1993 .
[16] B. J. Van Heyst,et al. A pesticide emission model (PEM) Part I: model development , 2002 .
[17] Laurence Guichard,et al. Pesticides, agriculture et environnement. Réduire l'utilisation des pesticides et en limiter les impacts environnementaux. Expertise scientifique collective Inra-Cemagref (décembre 2005) , 2007 .
[18] Aaldrik Tiktak,et al. PEARL model for pesticide behaviour and emissions in soil-plant systems , 2001 .
[19] Christophe Pradal,et al. Building modular FSPM under OpenAlea: concepts and applications , 2010 .
[20] C. Fournier,et al. OpenAlea: a visual programming and component-based software platform for plant modelling. , 2008, Functional plant biology : FPB.
[21] G. H. Willis,et al. Pesticide persistence on foliage , 1987 .
[22] J. Kelly,et al. Manipulation of plant architecture to enhance crop disease control , 2007 .
[23] Bruno Andrieu,et al. Coupling a 3D virtual wheat (Triticum aestivum) plant model with a Septoria tritici epidemic model (Septo3D): a new approach to investigate plant-pathogen interactions linked to canopy architecture. , 2008, Functional plant biology : FPB.