Weak lensing by galaxy troughs in DES Science Verification data

We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ∈ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.

[1]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[2]  Birgit Wirtz,et al.  Principles Of Physical Cosmology , 2016 .

[3]  R. Nichol,et al.  Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data. , 2015, Physical review letters.

[4]  Yan-Chuan Cai,et al.  Testing gravity using cosmic voids , 2014, 1410.1510.

[5]  Voids in modified gravity reloaded: Eulerian void assignment , 2014, 1408.5338.

[6]  B. Jain,et al.  Lensing Measurements of the Mass Distribution in SDSS Voids , 2014, 1404.1834.

[7]  C. Bonnett Using neural networks to estimate redshift distributions. An application to CFHTLenS , 2013, 1312.1287.

[8]  B. Wandelt,et al.  Dark matter voids in the SDSS galaxy survey , 2014, 1410.0355.

[9]  R. Nichol,et al.  Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.

[10]  M. Meneghetti,et al.  CLASH: WEAK-LENSING SHEAR-AND-MAGNIFICATION ANALYSIS OF 20 GALAXY CLUSTERS , 2014, 1404.1375.

[11]  Benjamin Dan Wandelt,et al.  Universal density profile for cosmic voids. , 2014, Physical review letters.

[12]  Jean Coupon,et al.  athena: Tree code for second-order correlation functions , 2014 .

[13]  Benjamin D. Wandelt,et al.  Voids in the SDSS DR9: observations, simulations, and the impact of the survey mask , 2013, 1310.7155.

[14]  J. Koppenhoefer,et al.  Weak lensing analysis of SZ-selected clusters of galaxies from the SPT and Planck surveys , 2013, 1310.6744.

[15]  Benjamin D. Wandelt,et al.  First measurement of gravitational lensing by cosmic voids in SDSS , 2013, 1309.2045.

[16]  Michael S. Warren,et al.  Cosmology with void-galaxy correlations. , 2013, Physical review letters.

[17]  H. Hoekstra,et al.  CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing , 2013, 1304.4265.

[18]  A. Finoguenov,et al.  redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG , 2013, 1303.3562.

[19]  R. Blandford,et al.  Weighing the Giants - I. Weak-lensing masses for 51 massive galaxy clusters: project overview, data analysis methods and cluster images , 2012, 1208.0597.

[20]  Farhan Feroz,et al.  SkyNet: Neural network training tool for machine learning in astronomy , 2013 .

[21]  R. Bender,et al.  Dark matter halo properties from galaxy-galaxy lensing , 2013, 1303.6287.

[22]  H. Hoekstra,et al.  CFHTLenS: the environmental dependence of galaxy halo masses from weak lensing , 2013, 1301.7421.

[23]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[24]  Yan-Chuan Cai,et al.  Voids in modified gravity: excursion set predictions , 2012, 1212.2216.

[25]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[26]  K. Umetsu,et al.  THE WEIGHT OF EMPTINESS: THE GRAVITATIONAL LENSING SIGNAL OF STACKED VOIDS , 2012, 1210.2446.

[27]  H. Hoekstra,et al.  The Canadian Cluster Comparison Project: weak lensing masses and SZ scaling relations† , 2012, 1208.0606.

[28]  D. Weinberg,et al.  A PUBLIC VOID CATALOG FROM THE SDSS DR7 GALAXY REDSHIFT SURVEYS BASED ON THE WATERSHED TRANSFORM , 2012, 1207.2524.

[29]  Amber D. Miller,et al.  LoCuSS: THE SUNYAEV–ZEL'DOVICH EFFECT AND WEAK-LENSING MASS SCALING RELATION , 2011, 1107.5115.

[30]  H. Hoekstra,et al.  Galaxy-galaxy lensing constraints on the relation between baryons and dark matter in galaxies in the Red Sequence Cluster Survey 2 , 2011, 1107.4093.

[31]  G. Bernstein,et al.  Optimizing weak lensing mass estimates for cluster profile uncertainty , 2011, 1104.2596.

[32]  G. Bernstein,et al.  Optimal linear reconstruction of dark matter from halo catalogues , 2010, 1007.3500.

[33]  Yannick Mellier,et al.  Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.

[34]  Amber D. Miller,et al.  LoCuSS: A COMPARISON OF SUNYAEV–ZEL'DOVICH EFFECT AND GRAVITATIONAL-LENSING MEASUREMENTS OF GALAXY CLUSTERS , 2009, 0907.1687.

[35]  J. Frieman,et al.  CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS. I. MEASUREMENTS , 2007, 0709.1153.

[36]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[37]  Hideki Takami,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2008 .

[38]  R. Wechsler,et al.  The Dependence of Halo Clustering on Halo Formation History, Concentration, and Occupation , 2005, astro-ph/0512416.

[39]  Peter Schneider,et al.  Gravitational Lensing: Strong, Weak and Micro , 2006 .

[40]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[41]  B. Flaugher The Dark Energy Survey , 2005 .

[42]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[43]  H. Hoekstra,et al.  Properties of Galaxy Dark Matter Halos from Weak Lensing , 2003, astro-ph/0310756.

[44]  A. Connolly,et al.  The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky Survey , 2003, astro-ph/0312036.

[45]  J. Khoury,et al.  Chameleon Cosmology , 2003, astro-ph/0309411.

[46]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[47]  Bonn,et al.  Analysis of two-point statistics of cosmic shear - I. Estimators and covariances , 2002, astro-ph/0206182.

[48]  G. Bernstein,et al.  Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales , 2000, Nature.

[49]  R. Blandford,et al.  Weak Gravitational Lensing by Galaxies , 1995, astro-ph/9503073.

[50]  P. Peebles Principles of Physical Cosmology , 1993 .

[51]  F. Valdes,et al.  Detection of systematic gravitational lens galaxy image alignments - Mapping dark matter in galaxy clusters , 1990 .

[52]  A. Vainshtein,et al.  To the problem of nonvanishing gravitation mass , 1972 .

[53]  D. Nelson Limber,et al.  The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II , 1953 .