An Approach to Constructing a Homogeneous Time Series of Soil Moisture Using SMOS

Overlapping soil moisture time series derived from two satellite microwave radiometers (the Soil Moisture and Ocean Salinity (SMOS) and the Advanced Microwave Scanning Radiometer-Earth Observing System) are used to generate a soil moisture time series from 2003 to 2010. Two statistical methodologies for generating long homogeneous time series of soil moisture are considered. Generated soil moisture time series using only morning satellite overpasses are compared to ground measurements from four watersheds in the U.S. with different climatologies. The two methods, cumulative density function (CDF) matching and copulas, are based on the same statistical theory, but the first makes the assumption that the two data sets are ordered the same way, which is not needed by the second. Both methods are calibrated in 2010, and the calibrated parameters are applied to the soil moisture data from 2003 to 2009. Results from these two methods compare well with ground measurements. However, CDF matching improves the correlation, whereas copulas improve the root-mean-square error.

[1]  Philippe Richaume,et al.  Evaluation of SMOS Soil Moisture Products Over Continental U.S. Using the SCAN/SNOTEL Network , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[3]  C. De Michele,et al.  On the Use of Copulas in Hydrology: Theory and Practice , 2007 .

[4]  M. Begert,et al.  Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000 , 2005 .

[5]  Yann Kerr,et al.  Validation of Soil Moisture and Ocean Salinity (SMOS) Soil Moisture Over Watershed Networks in the U.S. , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Christian M. Hafner,et al.  Efficient estimation of a semiparametric dynamic copula model , 2010, Comput. Stat. Data Anal..

[7]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[8]  Francesco Serinaldi,et al.  Fully Nested 3-Copula: Procedure and Application on Hydrological Data , 2007 .

[9]  Jeffrey P. Walker,et al.  A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  Matthias Drusch,et al.  Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture , 2005 .

[11]  T. Holmes,et al.  An analysis of spatiotemporal variations of soil and vegetation moisture from a 29‐year satellite‐derived data set over mainland Australia , 2009 .

[12]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[13]  Yaping Wang,et al.  Modeling the Dependent Competing Risks With Multiple Degradation Processes and Random Shock Using Time-Varying Copulas , 2012, IEEE Transactions on Reliability.

[14]  Thomas J. Jackson,et al.  Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[15]  T. Jackson,et al.  The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN) , 2007 .

[16]  Matthias Drusch,et al.  Initializing numerical weather prediction models with satellite‐derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set , 2007 .

[17]  W. Wagner,et al.  An Intercomparison of ERS-Scat and AMSR-E Soil Moisture Observations with Model Simulations over France , 2009 .

[18]  Harald Kunstmann,et al.  Copula-based statistical refinement of precipitation in RCM simulations over complex terrain , 2011 .

[19]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[20]  Bruno Rémillard,et al.  Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation , 2006 .

[21]  Vijay P. Singh,et al.  Special issue: Copulas in hydrology , 2007 .

[22]  P. K. Thapliyal,et al.  Assessment of the AMSR-E soil moisture product over India , 2011 .

[23]  Arnaud Mialon,et al.  The SMOS Soil Moisture Retrieval Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Jennifer M. Jacobs,et al.  Temporal Variability Corrections for Advanced Microwave Scanning Radiometer E (AMSR-E) Surface Soil Moisture: Case Study in Little River Region, Georgia, U.S. , 2008, Sensors.

[25]  Thomas J. Jackson,et al.  Soil moisture retrieval from AMSR-E , 2003, IEEE Trans. Geosci. Remote. Sens..

[26]  Ghislain Picard,et al.  Surface melting observations in Antarctica by microwave radiometers: Correcting 26-year time series from changes in acquisition hours , 2006 .

[27]  H. Douville,et al.  Relevance of soil moisture for seasonal climate predictions: a preliminary study , 2000 .

[28]  C. De Michele,et al.  A Generalized Pareto intensity‐duration model of storm rainfall exploiting 2‐Copulas , 2003 .

[29]  Klaus Scipal,et al.  An Improved Soil Moisture Retrieval Algorithm for ERS and METOP Scatterometer Observations , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[30]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[31]  W. D. Hogg,et al.  Homogenization of Daily Temperatures over Canada , 2002 .

[32]  Yi Y. Liu,et al.  Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals , 2011 .

[33]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[34]  D. Dupuis Using Copulas in Hydrology: Benefits, Cautions, and Issues , 2007 .

[35]  Randal D. Koster,et al.  Bias reduction in short records of satellite soil moisture , 2004 .

[36]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[37]  Patricia de Rosnay,et al.  Technical Implementation of SMOS Data in the ECMWF Integrated Forecasting System , 2012, IEEE Geoscience and Remote Sensing Letters.

[38]  Y. Taché,et al.  Editorial , 2011, Peptides.

[39]  E. Wood,et al.  Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching , 2010 .

[40]  Matthew F. McCabe,et al.  Copula-Derived Observation Operators for Assimilating TMI and AMSR-E Retrieved Soil Moisture into Land Surface Models , 2007 .

[41]  Y. Kerr,et al.  Soil moisture active and passive microwave products : intercomparison and evaluation over a Sahelian site , 2009 .

[42]  B. Rémillard,et al.  Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models , 2005 .

[43]  Y. Kerr,et al.  L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields , 2007 .

[44]  Daniel Berg Copula goodness-of-fit testing: an overview and power comparison , 2009 .

[45]  B. Schweizer,et al.  On Nonparametric Measures of Dependence for Random Variables , 1981 .

[46]  Thomas J. Jackson,et al.  WindSat Global Soil Moisture Retrieval and Validation , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Pravin K. Trivedi,et al.  Copula Modeling: An Introduction for Practitioners , 2007 .

[48]  B. Bobée,et al.  Multivariate hydrological frequency analysis using copulas , 2004 .

[49]  R. Nelsen An Introduction to Copulas , 1998 .

[50]  Vijay P. Singh,et al.  Trivariate Flood Frequency Analysis Using the Gumbel–Hougaard Copula , 2007 .

[51]  Ahmad Al Bitar,et al.  Comparison Between SMOS, VUA, ASCAT, and ECMWF Soil Moisture Products Over Four Watersheds in U.S. , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Thomas R. H. Holmes,et al.  An evaluation of AMSR–E derived soil moisture over Australia , 2009 .

[53]  Anne-Catherine Favre,et al.  Bayesian copula selection , 2006, Comput. Stat. Data Anal..

[54]  Philippe Richaume,et al.  Evaluation of AMSR‐E soil moisture product based on ground measurements over temperate and semi‐arid regions , 2008 .