Biometrics System based on Human Gait Patterns

To day's commercially available biometric systems show good reliability. However, they generally lack user acceptance. In general, people favour systems with the least amount of interaction. Using gait as a biometric feature would lessen such problems since it requires no subject interaction other than walking by. Consequently, this would increase user acceptance. And since highly motivated users achieve higher recognition scores, it increases the overall recognition rate as well. The latest research on gait-based identification—identification by observation of a person's walking style provides evidence that such a system is realistic and is likely to be developed and used in the years to come. This article outlines the application of gait technologies for security and other purposes. Gait analysis and recognition can form the basis of unobtrusive technologies for the detection of individuals who represent a security threat or behave suspiciously.

[1]  Yanxi Liu,et al.  Gait Sequence Analysis Using Frieze Patterns , 2002, ECCV.

[2]  Rama Chellappa,et al.  Identification of humans using gait , 2004, IEEE Transactions on Image Processing.

[3]  Rama Chellappa,et al.  Fusion of gait and face for human identification , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[4]  Dimitrios Hatzinakos,et al.  An angular transform of gait sequences for gait assisted recognition , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[5]  Konstantinos N. Plataniotis,et al.  Adaptive fuzzy systems for multichannel signal processing , 1999, Proc. IEEE.

[6]  Aaron F. Bobick,et al.  Gait recognition using static, activity-specific parameters , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[7]  M. Nixon,et al.  Canonical space representation for recognizing humans by gait and face , 1998, 1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165).

[8]  F. Livesey,et al.  The ORL Acfive Floor , 1997 .

[9]  Anil K. Jain,et al.  Contour extraction of moving objects in complex outdoor scenes , 1995, International Journal of Computer Vision.

[10]  L Sloman,et al.  Gait patterns of depressed patients and normal subjects. , 1982, The American journal of psychiatry.

[11]  Mark S. Nixon,et al.  A statistical approach for recognizing humans by gait using spatial-temporal templates , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[12]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[13]  Rama Chellappa,et al.  Gait Analysis for Human Identification , 2003, AVBPA.

[14]  Mark S. Nixon,et al.  Recognizing humans by gait using a statistical approach for temporal templates , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[15]  Dimitrios Hatzinakos,et al.  Gait recognition using dynamic time warping , 2004, IEEE 6th Workshop on Multimedia Signal Processing, 2004..

[16]  Mark S. Nixon,et al.  On automated model-based extraction and analysis of gait , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[17]  Trevor Darrell,et al.  Integrated face and gait recognition from multiple views , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[18]  TanTieniu,et al.  Silhouette Analysis-Based Gait Recognition for Human Identification , 2003 .

[19]  Mark S. Nixon,et al.  Automatic Gait Recognition via Fourier Descriptors of Deformable Objects , 2003, AVBPA.

[20]  Murray Mp,et al.  Gait as a total pattern of movement. , 1967 .

[21]  Robert T. Collins,et al.  Gait Shape Estimation for Identification , 2003, AVBPA.

[22]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Adam Prügel-Bennett,et al.  Automatic gait recognition using area-based metrics , 2003 .

[24]  Mark S. Nixon,et al.  Automatic extraction and description of human gait models for recognition purposes , 2003, Comput. Vis. Image Underst..

[25]  Larry S. Davis,et al.  Motion-based recognition of people in EigenGait space , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[26]  Mark S. Nixon,et al.  Using Gait as a Biometric, via Phase-weighted Magnitude Spectra , 1997, AVBPA.

[27]  Ralph Gross,et al.  The CMU Motion of Body (MoBo) Database , 2001 .

[28]  F. Livesey,et al.  The ORL active floor [sensor system] , 1997, IEEE Wirel. Commun..

[29]  Sudeep Sarkar,et al.  Baseline results for the challenge problem of HumanID using gait analysis , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[30]  Kinh Tieu,et al.  Learning pedestrian models for silhouette refinement , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[31]  M. Nixon,et al.  Human gait recognition in canonical space using temporal templates , 1999 .

[32]  Mark S. Nixon,et al.  Extraction of Moving Articulated-Objects by Evidence Gathering , 1998, BMVC.

[33]  Hiroshi Murase,et al.  Moving object recognition in eigenspace representation: gait analysis and lip reading , 1996, Pattern Recognit. Lett..

[34]  Aaron F. Bobick,et al.  A Multi-view Method for Gait Recognition Using Static Body Parameters , 2001, AVBPA.

[35]  Sudeep Sarkar,et al.  The gait identification challenge problem: data sets and baseline algorithm , 2002, Object recognition supported by user interaction for service robots.

[36]  Chris J. Harris,et al.  Visual Surveillance and Tracking of Humans by Face and Gait Recognition , 1998 .

[37]  Rama Chellappa,et al.  A hidden Markov model based framework for recognition of humans from gait sequences , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[38]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[39]  Robert T. Collins,et al.  Silhouette-based human identification from body shape and gait , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[40]  Edward H. Adelson,et al.  Analyzing and recognizing walking figures in XYT , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Gregory D. Abowd,et al.  The smart floor: a mechanism for natural user identification and tracking , 2000, CHI Extended Abstracts.

[42]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  E. Ayyappa Normal Human Locomotion, Part 1: Basic Concepts and Terminology , 1997 .

[44]  W. Eric L. Grimson,et al.  Gait analysis for recognition and classification , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[45]  J. Little,et al.  Recognizing People by Their Gait: The Shape of Motion , 1998 .

[46]  J. Cutting,et al.  Recognizing friends by their walk: Gait perception without familiarity cues , 1977 .

[47]  Mark S. Nixon,et al.  Comparing Different Template Features for Recognizing People by their Gait , 1998, BMVC.

[48]  Tieniu Tan,et al.  Silhouette Analysis-Based Gait Recognition for Human Identification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Heinrich Niemann,et al.  Gait Classification with HMMs for Trajectories of Body Parts Extracted by Mixture Densities , 1998, BMVC.

[50]  M. P. Murray Gait as a total pattern of movement. , 1967, American journal of physical medicine.

[51]  M. D. Addlesee,et al.  The ORL Active Floor , 1997 .