Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes

[1]  Hao Shen,et al.  Copper nanocubes for CO2 reduction in gas diffusion electrodes , 2020 .

[2]  Ezra L. Clark,et al.  Insights into the Carbon Balance for CO2 Electroreduction on Cu using Gas Diffusion Electrode Reactor Designs , 2020, Energy & Environmental Science.

[3]  Christine M. Gabardo,et al.  Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis , 2019, Nature Catalysis.

[4]  A. Frenkel,et al.  Controlling speciation during CO2 reduction on Cu-alloy electrodes , 2019, ACS Catalysis.

[5]  Christine M. Gabardo,et al.  Molecular tuning of CO2-to-ethylene conversion , 2019, Nature.

[6]  Christine M. Gabardo,et al.  Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly , 2019, Joule.

[7]  Xuefeng Guo,et al.  Cu3N Nanocubes for Selective Electrochemical Reduction of CO2 to Ethylene. , 2019, Nano letters.

[8]  Charlotte K. Williams,et al.  The technological and economic prospects for CO2 utilization and removal , 2019, Nature.

[9]  Haotian Wang,et al.  Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices , 2019, Nature Energy.

[10]  W. Goddard,et al.  Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane , 2019, Nature Communications.

[11]  Betar M. Gallant,et al.  Promoting Amine-Activated Electrochemical CO2 Conversion with Alkali Salts , 2019, The Journal of Physical Chemistry C.

[12]  Shuang Li,et al.  SO2-Induced Selectivity Change in CO2 Electroreduction. , 2019, Journal of the American Chemical Society.

[13]  J. Nørskov,et al.  Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. , 2019, Chemical reviews.

[14]  O. Voznyy,et al.  Binding Site Diversity Promotes CO2 Electroreduction to Ethanol. , 2019, Journal of the American Chemical Society.

[15]  Hyunjoo J. Lee,et al.  Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes , 2019, Journal of CO2 Utilization.

[16]  Paul J. A. Kenis,et al.  Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption , 2019, Nature Energy.

[17]  Shan Jiang,et al.  New aspects of operando Raman spectroscopy applied to electrochemical CO2 reduction on Cu foams. , 2019, The Journal of chemical physics.

[18]  Xiaobo Ji,et al.  Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER , 2019, Energy & Environmental Science.

[19]  Jeremy T. Feaster,et al.  Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst , 2018, Nature Catalysis.

[20]  P. Somasundaran,et al.  On the origin of the elusive first intermediate of CO2 electroreduction , 2018, Proceedings of the National Academy of Sciences.

[21]  Chao Wang,et al.  Local pH Effect in the CO2 Reduction Reaction on High-Surface-Area Copper Electrocatalysts , 2018 .

[22]  Christine M. Gabardo,et al.  CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface , 2018, Science.

[23]  A. Frenkel,et al.  Nanoporous Copper-Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. , 2018, Journal of the American Chemical Society.

[24]  Jennifer A. Rudd,et al.  Poly-Amide Modified Copper Foam Electrodes for Enhanced Electrochemical Reduction of Carbon Dioxide , 2018 .

[25]  Danielle A. Salvatore,et al.  Electrolytic CO2 Reduction in a Flow Cell. , 2018, Accounts of chemical research.

[26]  I. Biswas,et al.  Modification of gas diffusion layers properties to improve water management , 2017, Materials for Renewable and Sustainable Energy.

[27]  Xiang Li,et al.  Spectroscopic Observation of Reversible Surface Reconstruction of Copper Electrodes under CO2 Reduction , 2017 .

[28]  P. Kenis,et al.  Nanoporous Copper Films by Additive-Controlled Electrodeposition: CO2 Reduction Catalysis , 2017 .

[29]  P. Kenis,et al.  Electroreduction of Carbon Dioxide to Hydrocarbons Using Bimetallic Cu-Pd Catalysts with Different Mixing Patterns. , 2017, Journal of the American Chemical Society.

[30]  Wilson A. Smith,et al.  Probing the Reaction Mechanism of CO2 Electroreduction over Ag Films via Operando Infrared Spectroscopy , 2017 .

[31]  H. Hess,et al.  Proximity does not contribute to activity enhancement in the glucose oxidase–horseradish peroxidase cascade , 2016, Nature Communications.

[32]  M. Biesinger,et al.  Interfacial Charge Transfer between Phenyl-Capped Aniline Tetramer Films and Iron Oxide Surfaces , 2016 .

[33]  Albertus D. Handoko,et al.  In Situ Raman Spectroscopy of Copper and Copper Oxide Surfaces during Electrochemical Oxygen Evolution Reaction: Identification of CuIII Oxides as Catalytically Active Species , 2016 .

[34]  Xun Lu,et al.  The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. , 2016, Physical chemistry chemical physics : PCCP.

[35]  P. Kortunov,et al.  CO2 Reaction Mechanisms with Hindered Alkanolamines: Control and Promotion of Reaction Pathways , 2016 .

[36]  P. Strasser,et al.  Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH , 2016 .

[37]  F. Calle‐Vallejo,et al.  Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. , 2015, The journal of physical chemistry letters.

[38]  A. Gewirth,et al.  In Situ Surface-Enhanced Raman Spectroscopy of the Electrochemical Reduction of Carbon Dioxide on Silver with 3,5-Diamino-1,2,4-Triazole , 2014 .

[39]  M. Koper,et al.  The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes , 2014 .

[40]  E. Sacher,et al.  Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media , 2004 .

[41]  J. Schultze,et al.  Electrochemical incorporation of copper in polyaniline layers , 2001 .

[42]  J. Frantz Raman spectra of potassium carbonate and bicarbonate aqueous fluids at elevated temperatures and pressures: comparison with theoretical simulations , 1998 .

[43]  Richard M. Crooks,et al.  Preparation of Cu Nanoclusters within Dendrimer Templates , 1998 .

[44]  H. Möhwald,et al.  Proton concentration profile in ultrathin polyelectrolyte films , 1995 .

[45]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[46]  A. Otto,et al.  The effect of atomic scale surface disorder on bonding and activation of adsorbates: vibrational properties of CO and CO2 on copper , 1993 .

[47]  M. Porter,et al.  The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes , 1991 .

[48]  Akira Murata,et al.  PRODUCTION OF METHANE AND ETHYLENE IN ELECTROCHEMICAL REDUCTION OF CARBON DIOXIDE AT COPPER ELECTRODE IN AQUEOUS HYDROGENCARBONATE SOLUTION , 1986 .

[49]  B. G. Oliver,et al.  A vibrational-spectroscopic study of the species present in the CO2−H2O system , 1972 .

[50]  M. Koper,et al.  Electrochemical reduction of carbon dioxide on copper electrodes , 2017 .

[51]  Paul J. A. Kenis,et al.  One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer , 2016 .

[52]  Jens K Nørskov,et al.  Materials for solar fuels and chemicals. , 2016, Nature materials.

[53]  B. Yi,et al.  Study on hydrophobicity loss of the gas diffusion layer in PEMFCs by electrochemical oxidation , 2014 .