Toward High-Performance Li Metal Anode via Difunctional Protecting Layer

Li-metal batteries are the preferred candidates for the next-generation energy storage, due to the lowest electrode potential and high capacity of Li anode. However, the dangerous Li dendrites and serious interface reaction hinder its practical application. In this work, we construct a difunctional protecting layer on the surface of the Li anode (the AgNO3-modified Li anode, AMLA) for Li-S batteries. This stable protecting layer can hinder the corrosion reaction with intermediate polysulfides (Li2Sx, 4 ≤ x ≤ 8) and suppress the Li dendrites by regulating Li metal nucleation and depositing Li under the layer uniformly. The AMLA can cycle more than 50 h at 5 mA cm−2 with the steady overpotential of lower than 0.2 V and show high capacity of 666.7 mAh g−1 even after 500 cycles at 0.8375 mA cm−2 in Li-S cell. This work makes great contribution to the protection of the Li anode and further promotes the practical application.

[1]  G. Wang,et al.  Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes , 2019 .

[2]  Feng Gao,et al.  Fabrication of F-doped, C-coated NiCo2O4 nanocomposites and its electrochemical performances for lithium-ion batteries , 2019, Solid State Ionics.

[3]  Jian Lu,et al.  A Facile Strategy to Construct Silver-Modified, ZnO-Incorporated and Carbon-Coated Silicon/Porous-Carbon Nanofibers with Enhanced Lithium Storage. , 2019, Small.

[4]  Qiang Zhang,et al.  Intercalated Electrolyte with High Transference Number for Dendrite‐Free Solid‐State Lithium Batteries , 2019, Advanced Functional Materials.

[5]  Wei Cai,et al.  Synthesis of Ag/Co@CoO NPs anchored within N-doped hierarchical porous hollow carbon nanofibers as a superior free-standing cathode for Li O2 batteries , 2019, Carbon.

[6]  P. Chu,et al.  Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes , 2019, Nature Communications.

[7]  A. Budziak,et al.  Structural and physical studies of the Ag-rich alloys from Ag-Li system , 2019, Thermochimica Acta.

[8]  Hui Tong,et al.  Formation and Effect of Residual Lithium Compounds on Li-Rich Cathode Material Li1.35[Ni0.35Mn0.65]O2. , 2019, ACS applied materials & interfaces.

[9]  Wenhui Wang,et al.  Lithiophilic Ag Nanoparticle Layer on Cu Current Collector toward Stable Li Metal Anode. , 2019, ACS applied materials & interfaces.

[10]  G. Wang,et al.  A Scalable Approach for Dendrite-Free Alkali Metal Anodes via Room-Temperature Facile Surface Fluorination. , 2019, ACS applied materials & interfaces.

[11]  Xin-Bing Cheng,et al.  Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes , 2019, Chem.

[12]  Jin-lei Gu,et al.  Li2O-Reinforced Solid Electrolyte Interphase on Three-Dimensional Sponges for Dendrite-Free Lithium Deposition , 2018, Front. Chem..

[13]  Guoxiu Wang,et al.  Toward High Performance Lithium–Sulfur Batteries Based on Li2S Cathodes and Beyond: Status, Challenges, and Perspectives , 2018 .

[14]  Qiang Zhang,et al.  Electronic and Ionic Channels in Working Interfaces of Lithium Metal Anodes , 2018, ACS Energy Letters.

[15]  K. Yuan,et al.  A Scalable Approach to Dendrite‐Free Lithium Anodes via Spontaneous Reduction of Spray‐Coated Graphene Oxide Layers , 2018, Advanced materials.

[16]  Hailiang Wang,et al.  High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes , 2018, Proceedings of the National Academy of Sciences.

[17]  Rui Zhang,et al.  Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries , 2018 .

[18]  K. Yuan,et al.  Suppressing Dendritic Lithium Formation Using Porous Media in Lithium Metal-Based Batteries. , 2018, Nano letters.

[19]  Qiangfeng Xiao,et al.  Fabrication of Hybrid Silicate Coatings by a Simple Vapor Deposition Method for Lithium Metal Anodes , 2018 .

[20]  Yonggang Yao,et al.  Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode , 2017, Advanced materials.

[21]  L. Nazar,et al.  A facile surface chemistry route to a stabilized lithium metal anode , 2017, Nature Energy.

[22]  X. Tao,et al.  3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries , 2017 .

[23]  Rui Zhang,et al.  Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. , 2017, Angewandte Chemie.

[24]  K. Yuan,et al.  Enabling effective polysulfide trapping and high sulfur loading via a pyrrole modified graphene foam host for advanced lithium–sulfur batteries , 2017 .

[25]  T. Shiga,et al.  Self-extinguishing electrolytes using fluorinated alkyl phosphates for lithium batteries , 2017 .

[26]  Xuanxuan Bi,et al.  Kinetics Tuning the Electrochemistry of Lithium Dendrites Formation in Lithium Batteries through Electrolytes. , 2017, ACS applied materials & interfaces.

[27]  K. Yuan,et al.  Dual Functionalities of Carbon Nanotube Films for Dendrite-Free and High Energy-High Power Lithium-Sulfur Batteries. , 2017, ACS applied materials & interfaces.

[28]  Guangyuan Zheng,et al.  Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. , 2017, Nano letters.

[29]  Xin-Bing Cheng,et al.  Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode , 2016 .

[30]  K. Yuan,et al.  Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. , 2016, ACS applied materials & interfaces.

[31]  Yayuan Liu,et al.  Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode , 2016, Nature Communications.

[32]  Xin-Bing Cheng,et al.  Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth , 2016, Advanced materials.

[33]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[34]  Deyu Wang,et al.  Volumetric variation confinement: surface protective structure for high cyclic stability of lithium metal electrodes , 2016 .

[35]  F. Ezema,et al.  Synthesis and characterization of nanocrystalline zinc sulphide thin films by chemical spray pyrolysis , 2015 .

[36]  Guangyuan Zheng,et al.  The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth , 2015, Nature Communications.

[37]  Liangbing Hu,et al.  Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. , 2015, ACS nano.

[38]  Z. Wen,et al.  Vinylene carbonate–LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode , 2015 .

[39]  Guoqiang Ma,et al.  A lithium anode protection guided highly-stable lithium-sulfur battery. , 2014, Chemical communications.

[40]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[41]  Shengdi Zhang Role of LiNO3 in rechargeable lithium/sulfur battery , 2012 .

[42]  Michael C. Wendl,et al.  Argonaute—a database for gene regulation by mammalian microRNAs , 2005, BMC Bioinformatics.

[43]  Jung-Ki Park,et al.  Protective layer with oligo(ethylene glycol) borate anion receptor for lithium metal electrode stabilization , 2004 .

[44]  G. Taillades,et al.  Silver : High performance anode for thin film lithium ion batteries , 2004 .

[45]  T. Kudo,et al.  Effect of a lithium alloy layer inserted between a lithium anode and a solid electrolyte , 1988 .

[46]  W. Werner [For lithium]. , 1973, Zeitschrift fur Allgemeinmedizin.