On Landau’s Eigenvalue Theorem and Information Cut-Sets
暂无分享,去创建一个
[1] Dennis Gabor,et al. Communication theory and physics , 1953, Trans. IRE Prof. Group Inf. Theory.
[2] H. Landau,et al. Eigenvalue distribution of time and frequency limiting , 1980 .
[3] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[4] Sae-Young Chung,et al. Capacity Scaling of Wireless Ad Hoc Networks: Shannon Meets Maxwell , 2010, IEEE Transactions on Information Theory.
[5] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[6] D. Slepian. Some comments on Fourier analysis, uncertainty and modeling , 1983 .
[7] D. Slepian,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .
[8] Massimo Franceschetti,et al. The Capacity of Wireless Networks: Information-Theoretic and Physical Limits , 2009, IEEE Transactions on Information Theory.
[9] G. Toraldo di Francia. Degrees of freedom of an image. , 1969, Journal of the Optical Society of America.
[10] David L. Donoho,et al. Precise Undersampling Theorems , 2010, Proceedings of the IEEE.
[11] Miller,et al. Electromagnetic degrees of freedom of an optical system , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.
[12] Ralf R. Müller,et al. On channel capacity of communication via antenna arrays with receiver noise matching , 2012, 2012 IEEE Information Theory Workshop.
[13] Francis T. S. Yu,et al. Light and information , 2015, Optical Memory and Neural Networks.
[14] Rodney A. Kennedy,et al. Intrinsic Limits of Dimensionality and Richness in Random Multipath Fields , 2007, IEEE Transactions on Signal Processing.
[15] H. Landau,et al. On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels , 1975 .
[16] D. Gabor. IV Light and Information , 1961 .
[17] G. D. Francia. Degrees of Freedom of Image , 1969 .
[18] Ayfer Özgür,et al. Spatial Degrees of Freedom of Large Distributed MIMO Systems and Wireless Ad Hoc Networks , 2013, IEEE Journal on Selected Areas in Communications.
[19] G. Franceschetti,et al. On the degrees of freedom of scattered fields , 1989 .
[20] G. D. Francia. Resolving Power and Information , 1955 .
[21] D. Slepian. Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.
[22] D. Donev. Prolate Spheroidal Wave Functions , 2017 .
[23] D. Donoho,et al. Uncertainty principles and signal recovery , 1989 .
[24] D. Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .
[25] D. Slepian. Some Asymptotic Expansions for Prolate Spheroidal Wave Functions , 1965 .
[26] Robert W. Brodersen,et al. Degrees of freedom in multiple-antenna channels: a signal space approach , 2005, IEEE Transactions on Information Theory.
[27] Wonseok Jeon,et al. The capacity of wireless channels: A physical approach , 2013, 2013 IEEE International Symposium on Information Theory.
[28] D. Slepian,et al. On bandwidth , 1976, Proceedings of the IEEE.
[29] H. Pollak,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .
[30] Massimo Franceschetti,et al. The Degrees of Freedom of Wireless NetworksVia Cut-Set Integrals , 2011, IEEE Transactions on Information Theory.
[31] D. Miller,et al. Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths. , 2000, Applied optics.
[32] O. Bucci,et al. Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples , 1998 .
[33] L. Goddard. Approximation of Functions , 1965, Nature.
[34] G. Franceschetti,et al. On the spatial bandwidth of scattered fields , 1987 .