On Landau’s Eigenvalue Theorem and Information Cut-Sets

A variation of Landau's eigenvalue theorem describing the phase transition of the eigenvalues of a time-frequency limiting, self adjoint operator is presented. The total number of degrees of freedom of square-integrable, multidimensional, bandlimited functions is defined in terms of Kolmogorov's n -width and computed in some limiting regimes, where the original theorem cannot be directly applied. Results are used to characterize up to order the total amount of information that can be transported in time and space by multiple-scattered electromagnetic waves, rigorously addressing a question originally posed in the early works of Toraldo di Francia and Gabor. Applications in the context of wireless communication and electromagnetic sensing are discussed.

[1]  Dennis Gabor,et al.  Communication theory and physics , 1953, Trans. IRE Prof. Group Inf. Theory.

[2]  H. Landau,et al.  Eigenvalue distribution of time and frequency limiting , 1980 .

[3]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[4]  Sae-Young Chung,et al.  Capacity Scaling of Wireless Ad Hoc Networks: Shannon Meets Maxwell , 2010, IEEE Transactions on Information Theory.

[5]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[6]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[7]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[8]  Massimo Franceschetti,et al.  The Capacity of Wireless Networks: Information-Theoretic and Physical Limits , 2009, IEEE Transactions on Information Theory.

[9]  G. Toraldo di Francia Degrees of freedom of an image. , 1969, Journal of the Optical Society of America.

[10]  David L. Donoho,et al.  Precise Undersampling Theorems , 2010, Proceedings of the IEEE.

[11]  Miller,et al.  Electromagnetic degrees of freedom of an optical system , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Ralf R. Müller,et al.  On channel capacity of communication via antenna arrays with receiver noise matching , 2012, 2012 IEEE Information Theory Workshop.

[13]  Francis T. S. Yu,et al.  Light and information , 2015, Optical Memory and Neural Networks.

[14]  Rodney A. Kennedy,et al.  Intrinsic Limits of Dimensionality and Richness in Random Multipath Fields , 2007, IEEE Transactions on Signal Processing.

[15]  H. Landau,et al.  On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels , 1975 .

[16]  D. Gabor IV Light and Information , 1961 .

[17]  G. D. Francia Degrees of Freedom of Image , 1969 .

[18]  Ayfer Özgür,et al.  Spatial Degrees of Freedom of Large Distributed MIMO Systems and Wireless Ad Hoc Networks , 2013, IEEE Journal on Selected Areas in Communications.

[19]  G. Franceschetti,et al.  On the degrees of freedom of scattered fields , 1989 .

[20]  G. D. Francia Resolving Power and Information , 1955 .

[21]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[22]  D. Donev Prolate Spheroidal Wave Functions , 2017 .

[23]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[24]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[25]  D. Slepian Some Asymptotic Expansions for Prolate Spheroidal Wave Functions , 1965 .

[26]  Robert W. Brodersen,et al.  Degrees of freedom in multiple-antenna channels: a signal space approach , 2005, IEEE Transactions on Information Theory.

[27]  Wonseok Jeon,et al.  The capacity of wireless channels: A physical approach , 2013, 2013 IEEE International Symposium on Information Theory.

[28]  D. Slepian,et al.  On bandwidth , 1976, Proceedings of the IEEE.

[29]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[30]  Massimo Franceschetti,et al.  The Degrees of Freedom of Wireless NetworksVia Cut-Set Integrals , 2011, IEEE Transactions on Information Theory.

[31]  D. Miller,et al.  Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths. , 2000, Applied optics.

[32]  O. Bucci,et al.  Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples , 1998 .

[33]  L. Goddard Approximation of Functions , 1965, Nature.

[34]  G. Franceschetti,et al.  On the spatial bandwidth of scattered fields , 1987 .